Publicación:
Analytical modelling of water pipeline start-up processes

dc.contributor.authorPatiño Vanegas, Alberto
dc.contributor.authorPayares Guevara, Carlos R.
dc.contributor.authorPereira Batista, Enrique
dc.contributor.authorCoronado Hernández, Óscar Enrique
dc.contributor.authorFuertes-Miquel, Vicente S.
dc.contributor.researcherCarlos R. Payares Guevara
dc.contributor.researcherEnrique Pereira-Batista
dc.contributor.researcherOscar E. Coronado-Hernández
dc.contributor.researchgroupGrupo de Investigación Física Aplicada y Procesamiento de Imágenes y Señales- FAPIS
dc.contributor.researchgroupGrupo de Investigación Gravitación y Matemática Aplicada
dc.contributor.seedbedsSemillero de Investigación en Matematica y Estadistica Aplicada
dc.date.accessioned2025-10-20T13:31:22Z
dc.date.issued2025-09-12
dc.descriptionContiene gráficos
dc.description.abstractThe start-up process of water-distribution networks has been extensively investigated in recent years, particularly regarding the pressure surges that may occur during such transient events. In this context, researchers have concentrated on exploring physical formulations capable of describing the behaviour of the two interacting phases—water and air—typically resolved through numerical approaches. This paper presents an analytical solution to the nonlinear mathematical model governing the start-up of water pipelines containing a trapped air pocket. The model adopts the rigid water column approximation for the liquid phase and a polytropic gas law to account for the compressibility of the air. The resulting system can be formulated as a second-order nonlinear differential equation. The analytical approach consists of transforming the governing equation into a first-order linear ordinary differential equation, in which the square of the water front velocity is expressed as a function of the water column length. This transformation yields a closed-form solution expressed as a special integral series. The required integrals are evaluated using binomial expansions and incomplete gamma functions, enabling the derivation of a general solution valid within alternating intervals of monotonic motion. A practical application involving an 800 m pipeline is presented. Furthermore, the proposed solution is validated against experimental measurements, demonstrating the accuracy and effectiveness of the analytical approach in capturing the system’s transient behaviour.eng
dc.description.researchareaSistemas dinámicos
dc.description.researchareaHidráulica urbana y costera
dc.description.researchareaMecánica de fluidos
dc.description.tableofcontents1. Introduction 2. Mathematical Model 2.1 Physical Considerations of the System ​ 2.2 Transient Model of Pipe Filling with Trapped Air ​ 2.3 Initial and Boundary Conditions ​ 2.4 Description of the Oscillatory Dynamics ​ 3. Analytical Solution 3.1 Reduction of the System to a Second-Order ODE ​ 3.2 Solution of the Autonomous Equation ​ 3.3 Determination of Key Variables 4. Verification of the Analytical Model ​ 4.1 Comparison Between the Integral-Form Analytical Solution and the Numerical Model ​ 4.2 Convergence of the Series-Based Analytical Solution ​ 4.3 Comparison with Existing Experimental Measurements ​ 5. Conclusions 6. Acknowledgments 7. Conflicts of Interest ​ 8. Abbreviations Appendix A. Expression of Hn in Terms of the Normalised Lower Incomplete Gamma Function γ∗ ​ Appendix B. Expression of Kn in Terms of the Normalised Lower Incomplete Gamma Function γ∗ ​ Referenceseng
dc.format.extent20 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.citationPatiño-Vanegas, A., Payares Guevara, C. R., Pereira-Batista, E., Coronado-Hernández, O. E., & Fuertes-Miquel, V. S. (2025). Analytical modelling of water pipeline start-up processes. Fluids, 10(242). https://doi.org/10.3390/fluids10090242
dc.identifier.doihttps://doi.org/10.3390/fluids10090242
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14216
dc.language.isoeng
dc.publisherFluids
dc.relation.referencesMartin, C. Entrapped Air in Pipelines. In Proceedings of the Second International Conference on Pressure Surges, London, UK, 22–24 September 1976; pp. 15–28
dc.relation.referencesLiou, C.P.; Hunt, W.A. Filling of pipelines with undulating elevation profiles. J. Hydraul. Eng. 1996, 122, 534–539.
dc.relation.referencesCoronado-Hernández, E.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Effect of a Commercial Air Valve on the Rapid Filling of a Single Pipeline: A Numerical and Experimental Analysis. Water 2019, 11, 1814. [
dc.relation.referencesZhou, L.; Liu, D.; Karney, B. Investigation of hydraulic transients of two entrapped air pockets in a water pipeline. J. Hydraul. Eng. 2013, 139, 949–959.
dc.relation.referencesFuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Mora-Melia, D.; Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: A literature review. Urban Water J. 2019, 16, 299–311.
dc.relation.referencesHuang, B.; Fan, M.; Liu, J.; Zhu, D.Z. CFD Simulation of Air–Water Interactions in Rapidly Filling Horizontal Pipe with Entrapped Air. In Proceedings of the World Environmental and Water Resources Congress 2021, Virtually, 7–11 June 2021; pp. 495–507
dc.relation.referencesAguirre-Mendoza, A.M.; Paternina-Verona, D.A.; Oyuela, S.; Coronado-Hernández, O.E.; Besharat, M.; Fuertes-Miquel, V.S.; Iglesias-Rey, P.L.; Ramos, H.M. Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines. Water 2022, 14, 888
dc.relation.referencesMartins, N.M.C.; Delgado, J.N.; Ramos, H.M.; Covas, D.I.C. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. J. Hydraul. Res. 2017, 55, 506–519.
dc.relation.referencesZhou, L.; Liu, D.Y.; Ou, C.-q. Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Eng. Appl. Comput. Fluid Mech. 2011, 5, 127–140.
dc.relation.referencesPaternina-Verona, D.A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Saba, M.; Ramos, H.M. Digital Twin Based on CFD Modelling for Analysis of Two-Phase Flows During Pipeline Filling–Emptying Procedures. Appl. Sci. 2025, 15, 2643
dc.relation.referencesTijsseling, A.S.; Hou, Q.; Bozku¸s, Z.; Laanearu, J. Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. J. Press. Vessel Technol. 2015, 138, 031301.
dc.relation.referencesPaternina-Verona, D.A.; Coronado-Hernández, O.E.; Aguirre-Mendoza, A.M.; Espinoza-Román, H.G.; Fuertes-Miquel, V.S. Three-Dimensional Simulation of Transient Flows during the Emptying of Pipes with Entrapped Air. J. Hydraul. Eng. 2023, 149, 04023007.
dc.relation.referencesZaitsev, V.F.; Polyanin, A.D. Handbook of Exact Solutions for Ordinary Differential Equations; Chapman and Hall/CRC: Boca Raton, FL, USA, 2002.
dc.relation.referencesPayares Guevara, C.R.; Patiño-Vanegas, A.; Pereira-Batista, E.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S. An Analytical Model for the Prediction of Emptying Processes in Single Water Pipelines. Appl. Sci. 2025, 15, 6000.
dc.relation.referencesBerglund, E.Z.; Shafiee, M.E.; Xing, L.; Wen, J. Digital Twins for Water Distribution Systems. J. Water Resour. Plan. Manag. 2023, 149, 02523001.
dc.relation.referencesGino Ciliberti, F.; Berardi, L.; Laucelli, D.B.; David Ariza, A.; Vanessa Enriquez, L.; Giustolisi, O. From digital twin paradigm to digital water services. J. Hydroinform. 2023, 25, 2444–2459.
dc.relation.referencesBrahmbhatt, P.; Maheshwari, A.; Gudi, R.D. Digital twin assisted decision support system for quality regulation and leak localization task in large-scale water distribution networks. Digit. Chem. Eng. 2023, 9, 100127.
dc.relation.referencesChaudhry, H. Application of lumped and distributed approaches for hydraulic transient analysis. In Proceedings of the International Congress on Cases and Accidents in Fluid Systems, ANAIS, Polytechnic University of Sao Paulo, Sao Paulo, Brazil, 16–17 January 1989
dc.relation.referencesAbreu, J.; Cabrera, E.; Izquierdo, J.; García-Serra, J. Flow modeling in pressurized systems revisited. J. Hydraul. Eng. 1999, 125, 1154–1169. [
dc.relation.referencesIzquierdo, J.; Fuertes, V.S.; Cabrera, E.; Iglesias, P.L.; Garcia-Serra, J. Pipeline start-up with entrapped air. J. Hydraul. Res. 1999, 37, 579–590. [
dc.relation.referencesLaanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vuˇckovi´c, S.; Hou, Q.; Van’t Westende, J. Emptying of large-scale pipeline by pressurized air. J. Hydraul. Eng. 2012, 138, 1090–1100.
dc.relation.referencesAmer Water Works Assn. Air-Release, Air/Vacuum, and Combination Air Valves: M51; American Water Works Association: Denver, CO, USA, 2001; Volume 51.
dc.relation.referencesBonilla-Correa, D.M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Application of NewtonRaphson Method for Computing the Final Air-Water Interface Location in a Pipe Water Filling. Water 2023, 15, 1304
dc.relation.referencesBraun, M. Differential Equations and Their Applications; Short version; Springer: Berlin/Heidelberg, Germany, 1978.
dc.relation.referencesApostol, T.M. Calculus. Vol. I: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1967; pp. 441–444.
dc.relation.referencesParis, R.B. Incomplete gamma and related functions. In NIST Handbook of Mathematical Functions; U.S. Dept. Commerce: Washington, DC, USA, 2010; pp. 175–192.
dc.relation.referencesBoyd, J.P. Chebyshev and Fourier Spectral Methods, 2nd ed.; Dover Publications: New York, NY, USA, 2001.
dc.relation.referencesMuzzo, L.E.; Matoba, G.K.; Frölén Ribeiro, L. Uncertainty of pipe flow friction factor equations. Mech. Res. Commun. 2021, 116, 103764.
dc.relation.referencesHaaland, S.E. Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow. J. Fluids Eng. 1983, 105, 89–90.
dc.rightsCopyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/).eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución 4.0 Internacional (CC BY 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
dc.subject.lembHydraulic engineering
dc.subject.lembWater distribution networks
dc.subject.lembTransient flow (Hydraulics)
dc.subject.lembFluid mechanics
dc.subject.lembIngeniería hidráulica - - ) - - - Ecuaciones diferenciales - Interacción aire–agua
dc.subject.lembRedes de distribución de agua
dc.subject.lembFlujo transitorio (Hidráulica
dc.subject.lembMecánica de fluidos
dc.subject.odsODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
dc.subject.odsODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
dc.subject.proposalPipeline fillingeng
dc.subject.proposalEntrapped aireng
dc.subject.proposalAnalytical solutioneng
dc.subject.proposalTransient floweng
dc.titleAnalytical modelling of water pipeline start-up processeseng
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dcterms.audienceComunidad académica Estudiantes Ciudadaníaspa
dspace.entity.typePublication
relation.isAuthorOfPublication276cfc78-a984-49e2-a962-a3ed47c35f62
relation.isAuthorOfPublication8a4184b7-6478-40b3-8f49-aa2edb1e2bef
relation.isAuthorOfPublication482051d5-f72e-4f5c-ab50-931342cd5b83
relation.isAuthorOfPublication.latestForDiscovery276cfc78-a984-49e2-a962-a3ed47c35f62

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
fluids-10-00242.pdf
Tamaño:
3.31 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: