Publicación:
The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations

datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
dc.audienceInvestigadoresspa
dc.contributor.authorSan‐Blas, Ernesto
dc.contributor.authorPaba, Gabriel
dc.contributor.authorCubillán, Néstor
dc.contributor.authorPortillo, Edgar
dc.contributor.authorCasassa-Padrón, Ana M.
dc.contributor.authorGonzález‐González, César
dc.contributor.authorGuerra, Mayamarú
dc.date.accessioned2020-11-05T20:59:51Z
dc.date.available2020-11-05T20:59:51Z
dc.date.issued2020-08-01
dc.date.submitted2020-10-30
dc.description.abstractPlant parasitic nematodes are generally soilborne pathogens that attack plants and cause economic losses in many crops. The infested plants show nonspecific symptoms or, often, are symptomless; therefore, diagnosis is performed by taking soil and root tissue samples. Here, we show that a combination of different infrared spectra analysis and machine learning algorithms can be used to detect plant parasitic nematode infestations before symptoms become visible, using leaves instead of roots and soil as samples. We found that tomato and guava plants infested with Meloidogyne enterorlobii produced different spectral patterns compared to uninfested plants. Using partial spectra from 1,450 to 900/cm as the "fingerprint region", principal component analyses indicated that after 5 (tomatoes) or 8 weeks (guava), plants with no visible symptoms of infestations were positively diagnosed. To improve the early detection response, we used machine learning modelling. A support vector machine (SVM) was used to obtain more robust, accurate models. The SVM model contained 34 support vectors, 17 for each level. The overall performance of the model was >97% and the total accuracy was significantly higher, demonstrating the absence of chance prediction. The best prediction of infestation was obtained at the second and fourth weeks for tomatoes and guavas, respectively, reducing the diagnostic time by half. The combined application of these techniques reduces the processing time from field to laboratory and shows enormous advantages by avoiding root and soil sampling.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationSan‐Blas, E., Paba, G., Cubillán, N., Portillo, E., Casassa‐Padrón, A. M., González‐González, C., & Guerra, M. (2020). The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations. Plant Pathology, 69(8), 1589-1600. https://doi.org/10.1111/ppa.13246spa
dc.identifier.doi10.1111/ppa.13246
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9555
dc.identifier.urlhttps://bsppjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/ppa.13246
dc.language.isoengspa
dc.publisher.placeCartagena de Indiasspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.sourcePlant Pathology Volume 69, Issue 8spa
dc.subject.keywordsArtificial intelligencespa
dc.subject.keywordsFourier transformed infrared spectroscopy – attenuated total reflectance (FTIR‐ATR)spa
dc.subject.keywordsGenetic algorithmsspa
dc.subject.keywordsGenetic algorithmsspa
dc.subject.keywordsMeloidogyne enterolobiispa
dc.subject.keywordsPlant parasitic nematodesspa
dc.subject.keywordsSupport vector machinespa
dc.titleThe use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestationsspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
69.pdf
Tamaño:
82.57 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.11 KB
Formato:
Item-specific license agreed upon to submission
Descripción: