Publicación: A mixed-integer convex approximation for optimal load redistribution in bipolar DC networks with multiple constant power terminals
Portada
Citas bibliográficas
Código QR
Métricas
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor
Tipo de Material
Fecha
Citación
Título de serie/ reporte/ volumen/ colección
Es Parte de
Resumen en español
This paper proposes a mixed-integer convex model for optimal load-balancing in bipolar DC networks while considering multiple constant power terminals. The proposed convex model combines the Branch and Cut method with interior point optimization to solve the problem of optimal load balancing in bipolar DC networks. Additionally, the proposed convex model guarantees that global optimum of the problem is found, which ensures minimal power losses in the bipolar DC distribution grid branches, as the total monopolar load consumption has been balanced at the substation's terminals. In addition, an optimal load balancing improves the voltage profiles due to current redistribution between the positive and negative poles. Numerical results in the 21- and 85-bus test feeders and a comparison with three metaheuristic techniques show the effectiveness of the proposed convex model in reducing the total grid imbalance while minimizing the power losses and improving the voltage profiles.
PDF
FLIP 
