Publicación: Hölder continuous maps on the interval with positive metric mean dimension
| datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
| dc.audience | Público general | spa |
| dc.contributor.author | Romaña Ibarra, Sergio | |
| dc.contributor.author | Arias Cantillo, Raibel | |
| dc.contributor.author | Muentes Acevedo, Jeovanny De Jesús | |
| dc.date.accessioned | 2024-02-01T20:28:36Z | |
| dc.date.available | 2024-02-01T20:28:36Z | |
| dc.date.issued | 2023-11 | |
| dc.date.submitted | 2024-02-01 | |
| dc.description.abstract | Fix a compact metric space X with finite topological dimension. Let C0(X) be the space of continuous maps on X and Hα(X) the space of α-Hölder continuous maps on X, for α ∈ (0, 1]. Let H1(X) be the space of Lipschitz continuous maps on X. We have H1(X) ⊂ Hβ(X) ⊂ Hα(X) ⊂ C0(X), where 0 < α < β < 1. It is well-known that if φ ∈ H1(X), then φ has metric mean dimension equal to zero. On the other hand, if X is a manifold, then C0(X) contains a residual subset whose elements have positive metric mean dimension. In this work we will prove that, for any α ∈ (0, 1), there exists φ ∈ Hα([0, 1]) with positive metric mean dimension. | spa |
| dc.format.extent | 20 páginas | |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | Muentes Acevedo, J. de J., Romaña Ibarra, S. A. y Arias Cantillo, R. de J. (2024). Hölder continuous maps on the interval with positive metric mean dimension. Revista Colombiana de Matemáticas, 57(Supl), 57–76. https://doi.org/10.15446/recolma.v57nSupl.112448 | spa |
| dc.identifier.doi | https://doi.org/10.15446/recolma.v57nSupl.112448 | |
| dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
| dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/12603 | |
| dc.language.iso | eng | spa |
| dc.publisher.place | Cartagena de Indias | spa |
| dc.publisher.sede | Campus Tecnológico | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.cc | CC0 1.0 Universal | * |
| dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
| dc.source | Revista Colombiana de Matemáticas | spa |
| dc.subject.armarc | LEMB | |
| dc.subject.keywords | Metric mean dimension | spa |
| dc.subject.keywords | Topological entropy | spa |
| dc.subject.keywords | Hölder continuous maps | spa |
| dc.title | Hölder continuous maps on the interval with positive metric mean dimension | spa |
| dc.title.alternative | Funciones Hölder continuas en el intervalo con dimensión métrica media positiva | spa |
| dc.type | Artículo de revista | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
| dc.type.driver | info:eu-repo/semantics/article | spa |
| dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
| dcterms.bibliographicCitation | J. Muentes Acevedo, Genericity of continuous maps with positive metric mean dimension, Results in Mathematics 77 (2022), no. 1, 2. | spa |
| dcterms.bibliographicCitation | Carvalho, B. Fagner Rodrigues, and P. Varandas, Generic homeomor phisms have full metric mean dimension, Ergodic Theory and Dynamical Systems 42 (2022), no. 1, 40–64. | spa |
| dcterms.bibliographicCitation | P. Hazard, Maps in dimension one with infinite entropy, Arkiv för Matematik 58 (2020), no. 1, 95–119. | spa |
| dcterms.bibliographicCitation | A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, vol. 54, Cambridge university press, 1997. | spa |
| dcterms.bibliographicCitation | S. Kolyada and S. Lubomir, Topological entropy of nonautonomous dynamical systems, Random and computational dynamics 4 (1996), no. 2, 205. | spa |
| dcterms.bibliographicCitation | E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel Journal of Mathematics 115 (2000), no. 1, 1–24. | spa |
| dcterms.bibliographicCitation | W. De Melo and S. Van Strien, One-dimensional dynamics, Springer Science & Business Media 25 (2012). | spa |
| dcterms.bibliographicCitation | M. Misiurewicz, Horseshoes for continuous mappings of an interval, Dynamical systems. Springer, Berlin, Heidelberg, 2010. | spa |
| dcterms.bibliographicCitation | A. Velozo and R. Velozo, Rate distortion theory, metric mean dimension and measure theoretic entropy, arXiv preprint arXiv:1707.05762, 2017. | spa |
| dspace.entity.type | Publication | |
| oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
| relation.isAuthorOfPublication | 0aab56f2-0cbd-4150-8974-a2cc9996e481 | |
| relation.isAuthorOfPublication.latestForDiscovery | 0aab56f2-0cbd-4150-8974-a2cc9996e481 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- ace-rom-ari.pdf
- Tamaño:
- 527.56 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo principal
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.11 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: