Publicación: Nature-inspired lotus-shaped fins combined with hybrid nanoparticles and metal foam for high-performance latent heat thermal energy storage
| dc.contributor.author | Saini, Prashant | |
| dc.contributor.author | Osorio, Julian D. | |
| dc.contributor.author | Shah, Munjal P. | |
| dc.contributor.author | Patel, Umang N. | |
| dc.contributor.author | Nelapudi, Akhil | |
| dc.contributor.author | Porto Hernández, Luis A. | |
| dc.contributor.researchgroup | Grupo de Investigación en Ingeniería Naval y Offshore | |
| dc.date.accessioned | 2025-10-31T20:03:28Z | |
| dc.date.issued | 2025-10-03 | |
| dc.description | Incluye ilustraciones, gráficos | |
| dc.description.abstract | Latent heat thermal energy storage (LHTES) systems play a critical role in renewable energy integration by providing high energy density and nearly isothermal operation during phase transitions. However, their per formance is often limited by slow melting/charging rates, which motivates the search for enhanced heat transfer designs. This study investigates the melting behavior of RT-82 phase change material (PCM) using novel lotus shaped fins combined with copper metal foam and conductive graphene nanoparticles and carbon nanotubes. A two-dimensional enthalpy–porosity model in ANSYS Fluent was developed to simulate the charging/melting process, capturing non-thermal equilibrium between the foam and PCM/nano-PCM. In this study, effects of fin geometry, nanoparticle concentration, and foam porosity on melting dynamics and cost-performance trade-offs were investigated. Results showed that natural convection accelerated melting by ~12% compared to conduction-only scenarios. Optimized lotus-shaped fins with higher fin density (T3F4 and T3F10) achieved up to 63% faster melting relative to sparse configurations. Graphene nanoparticles improved thermal conductivity, with a 6% volume fraction, by reducing melting time by ~6.9%, while their combination with 75% porosity foam achieved a maximum reduction in the melting time of ~51% compared to pure PCM. Cost-performance analysis identified T3F4 as the most balanced design, offering rapid thermal response without excessive mate rial costs, while moderate-density designs like T3S6 provided economical alternatives with acceptable perfor mance. These results highlight the performance enhancement that can be achieved by integrating bio-inspired fins, nanoparticles, and foams, into compact and efficient LHTES for solar heating, building thermal manage ment, and industrial waste-heat recovery applications. | |
| dc.description.researcharea | Eficiencia energética y uso racional de la energía | |
| dc.description.researcharea | Energías alternativas | |
| dc.format.extent | 28 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Saini, Prashant, Julian D. Osorio, Munjal P. Shah, Umang N. Patel, Akhil Nelapudi, and Luis A. Porto-Hernandez. “Nature-Inspired Lotus-Shaped Fins Combined with Hybrid Nanoparticles and Metal Foam for High-Performance Latent Heat Thermal Energy Storage” 255 (October 3, 2025): 28. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2025.127897. | |
| dc.identifier.doi | https://doi.org/10.1016/j.ijheatmasstransfer.2025.127897 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/14267 | |
| dc.language.iso | eng | |
| dc.publisher | International Journal of Heat and Mass Transfer | |
| dc.relation.references | K.M. Kennedy, T.H. Ruggles, K. Rinaldi, J.A. Dowling, L. Duan, K. Caldeira, et al., The role of concentrated solar power with thermal energy storage in least-cost highly reliable electricity systems fully powered by variable renewable energy, Adv. Appl. Energy 6 (2022) 100091. | |
| dc.relation.references | H. Zhang, J. Baeyens, G. Cáceres, J. Degrève, Y. Lv Thermal energy storage: recent developments and practical aspects Prog. Energy Combust. Sci., 53 (2016), pp. 1-40 | |
| dc.relation.references | Saini P, Patil DV, Powar S. Review on integration of solar air heaters with thermal energy storage. In: Tyagi H, Agarwal AK, Chakraborty PR, Powar S, Applications of Solar Energy. Singapore: Springer; 2018 [cited 2024 Sep 9]. p. 163-86. Available from: https://doi.org/10.1007/978-981-10-7206-2_9 | |
| dc.relation.references | A.J. Carrillo, J. González-Aguilar, M. Romero, JM. Coronado Solar energy on demand: a review on high-temperature thermochemical heat storage systems and materials Chem. Rev., 119 (7) (2019), pp. 4777-4816 | |
| dc.relation.references | T. Bauer, N. Pfleger, N. Breidenbach, M. Eck, D. Laing, S. Kaesche Material aspects of solar salt for sensible heat storage Appl. Energy, 111 (2013), pp. 1114-1119 | |
| dc.relation.references | X. Huang, S. Yao, X. Yang, R. Zhou Melting performance assessments on a triplex-tube thermal energy storage system: optimization based on response surface method with natural convection Renew. Energy, 188 (2022), pp. 890-910 | |
| dc.relation.references | B. Cárdenas, N. León High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques Renew. Sustain. Energy Rev., 27 (2013), pp. 724-737 | |
| dc.relation.references | W. Aftab, A. Usman, J. Shi, K. Yuan, M. Qin, R. Zou Phase change material-integrated latent heat storage systems for sustainable energy solutions Energy Environ. Sci., 14 (8) (2021), pp. 4268-4291 | |
| dc.relation.references | B. Cárdenas, N. León High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques Renew. Sustain. Energy Rev., 27 (2013), pp. 724-737 | |
| dc.relation.references | W. Aftab, A. Usman, J. Shi, K. Yuan, M. Qin, R. Zou Phase change material-integrated latent heat storage systems for sustainable energy solutions Energy Environ. Sci., 14 (8) (2021), pp. 4268-4291 | |
| dc.relation.references | X. Huang, S. Yao, X. Yang, R. Zhou, J. Luo, X. Shen Comparison of solidification performance enhancement strategies for a triplex-tube thermal energy storage system Appl. Therm. Eng., 204 (2022), Article 117997 | |
| dc.relation.references | N. Hu, Z.R. Li, Z.W. Xu, LW. Fan Rapid charging for latent heat thermal energy storage: a state-of-the-art review of close-contact melting Renew. Sustain. Energy Rev., 155 (2022), Article 111918 | |
| dc.relation.references | P. Saini, JD. Osorio Review on phase change materials and thermoelectric generators for ocean thermal gradient applications Renew. Sustain. Energy Rev., 219 (2025), Article 115851 | |
| dc.relation.references | Q. Li, C. Li, Z. Du, F. Jiang, Y. Ding A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt-based phase change materials for medium and high temperature applications Appl. Energy, 255 (2019), Article 113806 | |
| dc.relation.references | P. Saini, A. Dhar, S. Powar, M. Doddamani Cesaro fins parametric optimization for enhancement in the solidification performance of a latent heat storage system with combined fins, foam, and nanoparticle Energy Rep., 9 (2023), pp. 5670-5687 | |
| dc.relation.references | P. Saini, A. Dhar, S. Powar Parametric optimization of a cesaro fins employed latent heat storage system for melting performance enhancement J. Energy Storage, 51 (2022), Article 104534 | |
| dc.relation.references | M. Alizadeh, Hosseinzadeh Kh, M.H. Shahavi, DD. Ganji Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material Appl. Therm. Eng., 163 (2019), Article 114436 | |
| dc.relation.references | A. Sciacovelli, F. Gagliardi, V. Verda Maximization of performance of a PCM latent heat storage system with innovative fins Appl. Energy, 137 (2015), pp. 707-715 | |
| dc.relation.references | G. Humbert, Y. Ding, A. Sciacovelli Combined enhancement of thermal and chemical performance of closed thermochemical energy storage system by optimized tree-like heat exchanger structures Appl. Energy, 311 (2022), Article 118633 | |
| dc.relation.references | Hosseinzadeh Kh, M. Alizadeh, M.H. Alipour, B. Jafari, DD. Ganji Effect of nanoparticle shape factor and snowflake crystal structure on discharging acceleration LHTESS containing (Al2O3-GO) HNEPCM J. Mol. Liq., 289 (2019), Article 111140 | |
| dc.relation.references | L. Wu, X. Zhang, X. Liu Numerical analysis and improvement of the thermal performance in a latent heat thermal energy storage device with spiderweb-like fins J. Energy Storage, 32 (2020), Article 101768 | |
| dc.relation.references | Y. Huang, Q. Han, X. Liu Experimental investigation on the melting and solidification performance enhancement of a fractal latent heat storage unit Int. J. Heat. Mass Transf., 179 (2021), Article 121640 | |
| dc.relation.references | Y. Huang, X. Liu Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins Renew. Energy, 174 (2021), pp. 199-217 | |
| dc.relation.references | J.D. Osorio, A. Rivera-Alvarez, JC. Ordonez Shape optimization of thin flat plate fins with geometries defined by linear piecewise functions Appl. Therm. Eng., 112 (2017), pp. 572-584 | |
| dc.relation.references | L. Pu, S. Zhang, L. Xu, Y. Li Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit Appl. Therm. Eng., 166 (2020), Article 114753 | |
| dc.relation.references | Y. Zhang, B. Lu, Z. Wang, J. Zhu, J. Zhang, C. Wang Experimental investigation on the charging and discharging performance enhancement of a vertical latent heat thermal energy storage unit via snowflake fin design Int. J. Heat. Mass Transf., 199 (2022), Article 123455 | |
| dc.relation.references | A. Rozenfeld, Y. Kozak, T. Rozenfeld, G. Ziskind Experimental demonstration, modeling and analysis of a novel latent-heat thermal energy storage unit with a helical fin Int. J. Heat. Mass Transf., 110 (2017), pp. 692-709 | |
| dc.relation.references | Q. Mao, Y. Zhu, T. Li Study on heat storage performance of a novel bifurcated finned shell-tube heat storage tank Energy, 263 (2023), Article 125636 | |
| dc.relation.references | Z. Elmaazouzi, I.A. Laasri, A. Gounni, M.E. Alami, EG. Bennouna Enhanced thermal performance of finned latent heat thermal energy storage system: fin parameters optimization J. Energy Storage, 43 (2021), Article 103116 | |
| dc.relation.references | C. Nie, S. Deng, J. Liu Effects of fins arrangement and parameters on the consecutive melting and solidification of PCM in a latent heat storage unit J. Energy Storage, 29 (2020), Article 101319 | |
| dc.relation.references | S.A. Zonouzi, A. Dadvar Numerical investigation of using helical fins for the enhancement of the charging process of a latent heat thermal energy storage system J. Energy Storage, 49 (2022), Article 104157 | |
| dc.relation.references | F. He, R. Bo, C. Hu, X. Meng, W. Gao Employing spiral fins to improve the thermal performance of phase-change materials in shell-tube latent heat storage units Renew. Energy, 203 (2023), pp. 518-528 | |
| dc.relation.references | S. Zhang, L. Pu, L. Xu, R. Liu, Y. Li Melting performance analysis of phase change materials in different finned thermal energy storage Appl. Therm. Eng., 176 (2020), Article 115425 | |
| dc.relation.references | M.J. Zarei, H. Bazai, M. Sharifpur, O. Mahian, B. Shabani The effects of fin parameters on the solidification of PCMs in a fin-enhanced thermal energy storage system Energies, 13 (1) (2020), p. 198 | |
| dc.relation.references | M.E. Nakhchi, JA. Esfahani Improving the melting performance of PCM thermal energy storage with novel stepped fins J. Energy Storage, 30 (2020), Article 101424 | |
| dc.relation.references | X. Yang, J. Guo, B. Yang, H. Cheng, P. Wei, YL. He Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit Appl. Energy, 279 (2020), Article 115772 | |
| dc.relation.references | H. Wang, H. Xu, C. Liu, Z. Zhang, X. Ling, F. Jiang Numerical investigation of melting enhancement for paraffin in an innovative finned-plate latent heat thermal energy storage unit J. Energy Storage, 43 (2021), Article 103222 | |
| dc.relation.references | R. Baby, C. Balaji Thermal optimization of PCM-based pin fin heat sinks: an experimental study Appl. Therm. Eng., 54 (1) (2013), pp. 65-77 | |
| dc.relation.references | J.M. Mahdi, EC. Nsofor Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins Appl. Energy, 211 (2018), pp. 975-986 | |
| dc.relation.references | S. Wu, H. Wang, S. Xiao, D. Zhu Numerical simulation on thermal energy storage behavior of Cu/paraffin nanofluids PCMs Procedia Eng., 31 (2012), pp. 240-244 | |
| dc.relation.references | Hosseinzadeh Kh, M.A.E. Moghaddam, A. Asadi, A.R. Mogharrebi, DD. Ganji Effect of internal fins along with hybrid nanoparticles on solid process in star shape triplex latent heat thermal energy storage system by numerical simulation Renew. Energy, 154 (2020), pp. 497-507 | |
| dc.relation.references | J.M. Khodadadi, SF. Hosseinizadeh Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage Int. Commun. Heat. Mass Transf., 34 (5) (2007), pp. 534-543 | |
| dc.relation.references | J.M. Mahdi, EC. Nsofor Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles–metal foam combination Appl. Energy, 191 (2017), pp. 22-34 | |
| dc.relation.references | J.M. Mahdi, EC. Nsofor Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles–fins combination Int. J. Heat. Mass Transf., 109 (2017), pp. 417-427 | |
| dc.relation.references | AA. Mohamad Myth about nano-fluid heat transfer enhancement Int. J. Heat. Mass Transf., 86 (2015), pp. 397-403 | |
| dc.relation.references | A. Hosseinpour, M. Pourfallah, M. Gholinia Improving energy storage by PCM using hybrid nanofluid [(SWCNTs-CuO)/H2O] and a helical (spiral) coil: hybrid passive techniques Theor. Appl. Mech. Lett., 13 (4) (2023), Article 100458 | |
| dc.relation.references | E.A. Hassan, M.A. Tony, MM. Awad Thermal energy storage using hybrid nanofluid phase change material based on waste sludge incorporating ZnO/α-Fe2O3 Nanomaterials, 14 (7) (2024), p. 604 | |
| dc.relation.references | Aljabair S, Sadiq IE. Effect of Al2O3/CuO Hybrid Nanoparticles Dispersion on Melting Process of PCM in a Triplex Tube Heat Storage. Rochester (NY): Social Science Research Network; 2025 [cited 2025 Aug 31]. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4463287. | |
| dc.relation.references | C.Y. Zhao, W. Lu, Y. Tian Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs) Sol. Energy, 84 (8) (2010), pp. 1402-1412 | |
| dc.relation.references | Z. Chen, D. Gao, J. Shi Experimental and numerical study on melting of phase change materials in metal foams at pore scale Int. J. Heat. Mass Transf., 72 (2014), pp. 646-655 | |
| dc.relation.references | W.Q. Li, Z.G. Qu, Y.L. He, WQ. Tao Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin Appl. Therm. Eng., 37 (2012), pp. 1-9 | |
| dc.relation.references | D. Zhou, CY. Zhao Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials Appl. Therm. Eng., 31 (5) (2011), pp. 970-977 | |
| dc.relation.references | X. Yang, Z. Guo, Y. Liu, L. Jin, Y.L. He Effect of inclination on the thermal response of composite phase change materials for thermal energy storage Appl. Energy, 238 (2019), pp. 22-33 | |
| dc.relation.references | W.B. Ye, M. Arıcı Redefined interface error, 2D verification and validation for pure solid-gallium phase change modeling by enthalpy-porosity methodology Int. Commun. Heat. Mass Transf., 147 (2023), Article 106952 | |
| dc.relation.references | W.B. Ye, M. Arıcı 3D validation, 2D feasibility, corrected and developed correlations for pure solid-gallium phase change modeling by enthalpy-porosity methodology Int. Commun. Heat. Mass Transf., 144 (2023), Article 106780 | |
| dc.relation.references | W.B. Ye, M. Arıcı Exploring mushy zone constant in enthalpy-porosity methodology for accurate modeling convection-diffusion solid-liquid phase change of calcium chloride hexahydrate Int. Commun. Heat. Mass Transf., 152 (2024), Article 107294 | |
| dc.relation.references | W.B. Ye, M. Arıcı False diffusion, asymmetrical interface, and equilibrious state for pure solid-gallium phase change modeling by enthalpy-porosity methodology Int. Commun. Heat. Mass Transf., 144 (2023), Article 106746 | |
| dc.relation.references | K. Teather, K. Siddiqui An experimental investigation of constrained melting of a phase change material in circular geometries. Part II: temperature characterization J. Energy Storage, 86 (2024), Article 110206 | |
| dc.relation.references | L. Lin, D. Yang, Z. Luo, D. Liu, S.P. Lohani, S. Jia, et al. Numerical study on melting and heat transfer characteristics of vertical cylindrical PCM with a focus on the solid–liquid interface heat transfer rate J. Energy Storage, 72 (2023), Article 108370 | |
| dc.relation.references | S. Liu, H. Peng, Z. Hu, X. Ling, J. Huang Solidification performance of a latent heat storage unit with innovative longitudinal triangular fins Int. J. Heat. Mass Transf., 138 (2019), pp. 667-676 | |
| dc.relation.references | M. Kazemi, M.J. Hosseini, A.A. Ranjbar, R. Bahrampoury Improvement of longitudinal fins configuration in latent heat storage systems Renew. Energy, 116 (2018), pp. 447-457 | |
| dc.relation.references | ANSYS Inc Fluent User’s Guide ANSYS Inc., Canonsburg (PA) (2025) | |
| dc.relation.references | Kherbeet ASh, H.A. Mohammed, BH. Salman The effect of nanofluids flow on mixed convection heat transfer over microscale backward-facing step Int. J. Heat. Mass Transf., 55 (21) (2012), pp. 5870-5881 | |
| dc.relation.references | Hosseinzadeh Kh, A. Asadi, A.R. Mogharrebi, M.E. Azari, DD. Ganji Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect J. Therm. Anal. Calorim., 143 (2) (2021), pp. 1081-1095 | |
| dc.relation.references | V.V. Calmidi, RL. Mahajan Forced convection in high porosity metal foams J. Heat. Transf., 122 (3) (2000), pp. 557-565 | |
| dc.relation.references | A. Žukauskas Heat transfer from tubes in crossflow J.P. Hartnett, T.F. Irvine (Eds.), Advances in Heat Transfer, Academic Press, New York (1972), pp. 93-160 [cited 2025 Jun 20].Available from: https://www.sciencedirect.com/science/article/pii/S0065271708700388 | |
| dc.relation.references | A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, M. AbdulrahmanTh Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins Energy Build., 68 (2014), pp. 33-41 | |
| dc.relation.references | B. Palmer, A. Arshad, Y. Yang, C. Wen Energy storage performance improvement of phase change materials-based triplex-tube heat exchanger using liquid–solid interface-informed fin configurations Appl. Energy, 333 (2023), Article 120576 | |
| dc.relation.references | V.R. Voller, C. Prakash A fixed grid numerical modelling methodology for convection–diffusion mushy region phase-change problems Int. J. Heat. Mass Transf., 30 (8) (1987), pp. 1709-1719 | |
| dc.relation.references | A. Ebrahimi, C.R. Kleijn, IM. Richardson Sensitivity of numerical predictions to the permeability coefficient in simulations of melting and solidification using the enthalpy-porosity method Energies, 12 (22) (2019), p. 4360 | |
| dc.relation.references | A.D. Brent, V.R. Voller, KJ. Reid Enthalpy-porosity technique for modeling convection–diffusion phase change: application to the melting of a pure metal Numer. Heat. Transf., 13 (3) (1988), pp. 297-318 | |
| dc.relation.references | A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, Mohammad ATh Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers Appl. Therm. Eng., 53 (1) (2013), pp. 147-156 | |
| dc.relation.references | T. Abdulrazzaq, H. Togun, J.M. Mahdi, H.I. Mohammed, F.L. Rashid, A.F. Khalaf, et al. Evaluation of multi-branch fin inserts for improved thermal response in latent heat storage systems: a numerical approach Case Stud. Therm. Eng., 73 (2025), Article 106464 | |
| dc.relation.references | A.M. Ali, A. Bagdanavicius, E.R. Barbour, D.L. Pottie, S. Garvey, J. Rouse, et al. Improving the performance of a shell and tube latent heat thermal energy storage through modifications of heat transfer pipes: a comprehensive investigation on various configurations J. Energy Storage, 96 (2024), Article 112678 | |
| dc.relation.references | A. Shahraki, A. Tavakoli, M. Mohammadi, A. Ebrahimi, A. Kianifar Enhancing the charging performance of a triplex-tube thermal energy storage system using fins and nanoparticles Therm. Sci. Eng. Prog., 62 (2025), Article 103565 | |
| dc.relation.references | A. Tavakoli, J. Hashemi, M. Najafian, A. Ebrahimi Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins Renew. Energy, 217 (2023), Article 119200 | |
| dc.relation.references | R.S. Vajjha, DK. Das Experimental determination of thermal conductivity of three nanofluids and development of new correlations Int. J. Heat. Mass Transf., 52 (21) (2009), pp. 4675-4682 | |
| dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.license | Atribución 4.0 Internacional (CC BY 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | |
| dc.subject.lemb | Almacenamiento de energía térmica | |
| dc.subject.lemb | Thermal energy storage | |
| dc.subject.lemb | Energía renovable | |
| dc.subject.lemb | Renewable energy | |
| dc.subject.lemb | Transferencia de calor | |
| dc.subject.lemb | Heat transfer | |
| dc.subject.ocde | 2. Ingeniería y Tecnología::2C. Ingeniería Mecánica | |
| dc.subject.ocde | 2. Ingeniería y Tecnología::2C. Ingeniería Mecánica::2C01. Ingeniería mecánica | |
| dc.subject.ods | ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos | |
| dc.subject.ods | ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles | |
| dc.subject.proposal | Nature-inspired shaped fins | |
| dc.subject.proposal | Phase change material | |
| dc.subject.proposal | Melting/charging | |
| dc.subject.proposal | Solidification/discharging | |
| dc.subject.proposal | Thermal energy storage | |
| dc.subject.proposal | Performance enhancement | |
| dc.title | Nature-inspired lotus-shaped fins combined with hybrid nanoparticles and metal foam for high-performance latent heat thermal energy storage | eng |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication |