Publicación:
In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.audiencePúblico generalspa
dc.contributor.authorCastro Vargas, Adriana
dc.contributor.authorPaul, Shiladitya
dc.coverage.spatialUnited Kingdom & Colombia
dc.date.accessioned2023-07-31T16:28:48Z
dc.date.available2023-07-31T16:28:48Z
dc.date.issued2023-07-14
dc.date.submitted2023-07-31
dc.description.abstractThis paper presents the results of a study that combined electrochemical monitoring with in-situ imaging of Thermal Spray Aluminium (TSA) coating in synthetic seawater at room temperature in quiescent condition. The coatings were obtained by twin-wire arc spraying of 1050 aluminium alloy on S355 carbon steel substrate. TSA-coated steel samples were evaluated by analysing sequential images of the surface: (i) without defect; (ii) with defects machined before immersion (5% and 30% of exposed steel surface); (iii) with a defect machined after 35 d of immersion (10% of exposed steel surface); and (iv) after the removal of calcareous deposits formed on top of the exposed steel surface. Variations in the coating and the defect were captured and correlated with the evolution of Open Circuit Potential (OCP) during 35 days of full immersion. Determination of calcareous deposit formation time on the top of exposed steel was also carried out. The defect created before immersion impacted the cathodic reactions, resulting in a faster formation of corrosion products and calcareous deposits compared to the defect machined after exposure to synthetic seawater. The penetration time of the electrolyte in the coating and the activation of the surface are key in the protection mechanism and the kinetics of corrosion.spa
dc.description.sponsorshipUTB, MInciencias, Lloy's Register Foundationspa
dc.format.extent10 páginas
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationAdriana Castro-Vargas and Shiladitya Paul, 'In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater'. Electrochimica Acta, Vol. 464, October 2023, 142847. https://doi.org/10.1016/j.electacta.2023.142847spa
dc.identifier.doidoi.org/10.1016/j.electacta.2023.142847
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12444
dc.language.isoengspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.sedeCampus Tecnológicospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectrochimica Acta - vol. 464 (2023)spa
dc.subject.armarcLEMB
dc.subject.keywordsThermal spray aluminiumspa
dc.subject.keywordsSynthetic seawaterspa
dc.subject.keywordsIn-situ Opical Analysisspa
dc.titleIn-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawaterspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dcterms.bibliographicCitation[1] W.H. Thomason, Offshore Corrosion Protection With Thermal-Sprayed Aluminum, Offshore Technology Conference Houston, Texas, 1985, https://doi.org/10.4043/4971-MS.spa
dcterms.bibliographicCitation[2] D.K.-K. Tiong, H. Pit, Experiences on Thermal Spray Aluminum (TSA) Coating on Offshore Structures, CORROSION 2004, OnePetro, 2004.spa
dcterms.bibliographicCitation[3] K.P. Fischer, W.H. Thomason, T. Rosbrook, J. Murali, Performance history of thermal-sprayed aluminum coatings in offshore service, Materials performance, 34 (1995) 27-35.spa
dcterms.bibliographicCitation[4] D.N. Veritas, DNV-RP-B401 Cathodic Protection Design, Recommended Practice, Norway: Det Norske Veritas, 2005spa
dcterms.bibliographicCitation[5] A. Castro-Vargas, S. Gill, S. Paul, Effect of Corrosion Products and Deposits on the Damage Tolerance of TSA-Coated Steel in Artificial Seawater, Surfaces, 5 (2022) 113-126, https://doi.org/10.3390/surfaces5010005.spa
dcterms.bibliographicCitation[6] R. Grinon-Echaniz, P. Refait, M. Jeannin, R. Sabot, S. Paul, R. Thornton, Study of cathodic reactions in defects of thermal spray aluminium coatings on steel in artificial seawater, Corrosion Science, 187 (2021) 109514, https://doi.org/10.1016/j.corsci.2021.109514.spa
dcterms.bibliographicCitation[7] R. Grinon-Echaniz, S. Paul, R. Thornton, P. Refait, M. Jeannin, A. Rodriguez, Prediction of thermal spray coatings performance in marine environments by combination of laboratory and field tests, Coatings, 11 (2021) 320, https://doi.org/10.3390/coatings11030320spa
dcterms.bibliographicCitation[8] R.G. Echaniz, S. Paul, R. Thornton, Effect of seawater constituents on the performance of thermal spray aluminum in marine environments, Materials and Corrosion, 70 (2019) 996-1004, https://doi.org/10.1002/maco.201810764spa
dcterms.bibliographicCitation[9] S. Paul, Cathodic protection of offshore structures by extreme damage tolerant sacrificial coatings, CORROSION 2018, OnePetro, 2018spa
dcterms.bibliographicCitation[10] S. Paul, Behavior of damaged thermally sprayed aluminum (TSA) in aerated and deaerated seawater, CORROSION 2019, OnePetro, 2019.spa
dcterms.bibliographicCitation[11] B. Syrek-Gerstenkorn, S. Paul, A.J. Davenport, Sacrificial thermally sprayed aluminium coatings for marine environments: A review, Coatings, 10 (2020) 267, https://doi.org/10.3390/coatings10030267.spa
dcterms.bibliographicCitation[12] Y. Yang, J.D. Scantlebury, E.V. Koroleva, A study of calcareous deposits on cathodically protected mild steel in artificial seawater, Metals, 5 (2015) 439-456, https://doi.org/10.3390/met5010439.spa
dcterms.bibliographicCitation[13] J.F. Yan, R.E. White, R. Griffin, Parametric studies of the formation of calcareous deposits on cathodically protected steel in seawater, Journal of the Electrochemical Society, 140 (1993) 1275.spa
dcterms.bibliographicCitation[14] W.R. Smith, S. Paul, Natural deposit coatings on steel during cathodic protection and hydrogen ingress, Coatings, 5 (2015) 816-829, https://doi.org/10.3390/coatings5040816.spa
dcterms.bibliographicCitation[15] C. Barchiche, C. Deslouis, D. Festy, O. Gil, P. Refait, S. Touzain, B. Tribollet, Characterization of calcareous deposits in artificial seawater by impedance techniques: 3—Deposit of CaCO3 in the presence of Mg (II), Electrochimica Acta, 48 (2003) 1645-1654, https://doi.org/10.1016/S0013-4686(03)00075-6.spa
dcterms.bibliographicCitation[16] N. Ce, S. Paul, The effect of temperature and local pH on calcareous deposit formation in damaged thermal spray aluminum (TSA) coatings and its implication on corrosion mitigation of offshore steel structures, Coatings, 7 (2017) 52, https://doi.org/10.3390/coatings7040052.spa
dcterms.bibliographicCitation[17] B. Syrek-Gerstenkorn, S. Paul, A.J. Davenport, Use of thermally sprayed aluminium (TSA) coatings to protect offshore structures in submerged and splash zones, Surface and Coatings Technology, 374 (2019) 124-133, https://doi.org/10.1016/j.surfcoat.2019.04.048.spa
dcterms.bibliographicCitation[18] H.-S. Lee, J.K. Singh, J.H. Park, Pore blocking characteristics of corrosion products formed on Aluminum coating produced by arc thermal metal spray process in 3.5 wt.% NaCl solution, Construction and Building Materials, 113 (2016) 905-916, https://doi.org/10.1016/j.conbuildmat.2016.03.135.spa
dcterms.bibliographicCitation[19] S. Paul, Hydrogen in aluminium-coated steels exposed to synthetic seawater, Surfaces, 3 (2020) 282-300, https://doi.org/10.3390/surfaces3030021.spa
dcterms.bibliographicCitation[20] S. Pedersen, J. Liniger, F.F. Sørensen, M. von Benzon, On Marine Growth Removal on Offshore Structures, OCEANS 2022-Chennai, IEEE, 2022, pp. 1-6, 10.1109/OCEANSChennai45887.2022.9775498.spa
dcterms.bibliographicCitation[21] E. Abedi Esfahani, H. Salimijazi, M.A. Golozar, J. Mostaghimi, L. Pershin, Study of corrosion behavior of arc sprayed aluminum coating on mild steel, Journal of thermal spray technology, 21 (2012) 1195-1202, https://doi.org/10.1007/s11666-012-9810-x.spa
dcterms.bibliographicCitation[22] A. Gericke, M. Hauer, B. Ripsch, M. Irmer, J. Nehlsen, K.-M. Henkel, Fatigue Strength of Structural Steel-Welded Connections with Arc-Sprayed Aluminum Coatings and Corrosion Behavior of the Corresponding Coatings in Sea Water, Journal of Marine Science and Engineering, 10 (2022) 1731, https://doi.org/10.3390/jmse10111731.spa
dcterms.bibliographicCitation[23] A. López-Ortega, R. Bayón, J. Arana, Evaluation of protective coatings for offshore applications. Corrosion and tribocorrosion behavior in synthetic seawater, Surface and Coatings Technology, 349 (2018) 1083-1097, https://doi.org/10.1016/j.surfcoat.2018.06.089.spa
dcterms.bibliographicCitation[24] S. Paul, D. Harvey, Determination of the Corrosion Rate of Thermally Spayed Aluminum (TSA) in Simulated Marine Service, CORROSION 2020, OnePetro, 2020.spa
dcterms.bibliographicCitation[25] ISO, 8501-1, Preparation of steel substrates before application of paints and related products—Visual assessment of surface cleanliness—Part 1: Rust grades and preparation grades of uncoated steel substrates and of steel substrates after overall removal of previous coatings, 2007.spa
dcterms.bibliographicCitation[26] ASTM D1141-98, Standard practice for the preparation of substitute ocean water, ASTM International, 2013.spa
dcterms.bibliographicCitation[27] D. Tejero-Martin, M. Rezvani Rad, A. McDonald, T. Hussain, Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings, Journal of Thermal Spray Technology, 28 (2019) 598-644.spa
dcterms.bibliographicCitation[28] M. Smith, Comparing cold spray with thermal spray coating technologies, The cold spray materials deposition process, Elsevier2007, pp. 43-61, https://doi.org/10.1533/9781845693787.1.43.spa
dspace.entity.typePublication
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
4. In-situ imagining and electrochemical monitoring of damaged TSA.pdf
Tamaño:
9.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Main Article

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.11 KB
Formato:
Item-specific license agreed upon to submission
Descripción: