Publicación: A machine learning model for occupancy rates and demand forecasting in the hospitality industry
| datacite.rights | http://purl.org/coar/access_right/c_16ec | |
| dc.contributor.editor | Escalante H.J. | |
| dc.contributor.editor | Montes-y-Gomez M. | |
| dc.contributor.editor | Segura A. | |
| dc.contributor.editor | de Dios Murillo J. | |
| dc.creator | Caicedo-Torres W. | |
| dc.creator | Payares F. | |
| dc.date.accessioned | 2020-03-26T16:32:44Z | |
| dc.date.available | 2020-03-26T16:32:44Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | Occupancy rate forecasting is a very important step in the decision-making process of hotel planners and managers. Popular strategies as Revenue Management feature forecasting as a vital activity for dynamic pricing, and without accurate forecasting, errors in pricing will negatively impact hotel financial performance. However, having accurate enough forecasts is no simple task for a wealth of reasons, as the inherent variability of the market, lack of personnel with statistical skills, and the high cost of specialized software. In this paper, several machine learning techniques were surveyed in order to construct models to forecast daily occupancy rates for a hotel, given historical records of bookings and occupation. Several approaches related to dataset construction and model validation are discussed. The results obtained in terms of the Mean Absolute Percentage Error (MAPE) are promising, and support the use of machine learning models as a tool to help solve the problem of occupancy rates and demand forecasting. © Springer International Publishing AG 2016. | eng |
| dc.format.medium | Recurso electrónico | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 201-211 | |
| dc.identifier.doi | 10.1007/978-3-319-47955-2_17 | |
| dc.identifier.instname | Universidad Tecnológica de Bolívar | |
| dc.identifier.isbn | 9783319479545 | |
| dc.identifier.issn | 03029743 | |
| dc.identifier.orcid | 55782426500 | |
| dc.identifier.orcid | 57191841375 | |
| dc.identifier.reponame | Repositorio UTB | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/8994 | |
| dc.language.iso | eng | |
| dc.publisher | Springer Verlag | |
| dc.relation.conferencedate | 23 November 2016 through 25 November 2016 | |
| dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
| dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994181326&doi=10.1007%2f978-3-319-47955-2_17&partnerID=40&md5=0e690b40469b675f34d98b3da10a4840 | |
| dc.source.event | 15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016 | |
| dc.subject.keywords | Forecasting | |
| dc.subject.keywords | Hotel occupancy. Demand | |
| dc.subject.keywords | Kernel Ridge Regression | |
| dc.subject.keywords | Machine learning | |
| dc.subject.keywords | Neural Networks | |
| dc.subject.keywords | Ridge regression | |
| dc.subject.keywords | Artificial intelligence | |
| dc.subject.keywords | Costs | |
| dc.subject.keywords | Decision making | |
| dc.subject.keywords | Economics | |
| dc.subject.keywords | Hotels | |
| dc.subject.keywords | Learning systems | |
| dc.subject.keywords | Neural networks | |
| dc.subject.keywords | Regression analysis | |
| dc.subject.keywords | Decision making process | |
| dc.subject.keywords | Financial performance | |
| dc.subject.keywords | Kernel ridge regressions | |
| dc.subject.keywords | Machine learning models | |
| dc.subject.keywords | Machine learning techniques | |
| dc.subject.keywords | Mean absolute percentage error | |
| dc.subject.keywords | Ridge regression | |
| dc.subject.keywords | Specialized software | |
| dc.subject.keywords | Forecasting | |
| dc.title | A machine learning model for occupancy rates and demand forecasting in the hospitality industry | |
| dc.type | Conferencia | |
| dc.type.driver | info:eu-repo/semantics/conferenceObject | |
| dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
| dcterms.bibliographicCitation | http://www.rueckstiess.net/research/snippets/show/72d2363e, Accessed 04 May 2016 | |
| dcterms.bibliographicCitation | Albanese, D., Visintainer, R., Merler, S., Riccadonna, S., Jurman, G., Furlanello, C., (2012) Mlpy: Machine Learning Python | |
| dcterms.bibliographicCitation | Andrew, W.P., Cranage, D.A., Lee, C.K., Forecasting hotel occupancy rates with time series models: An empirical analysis (1990) J. Hospitality Tourism Res, 14 (2), pp. 173-182. , http://jht.sagepub.com/content/14/2/173.abstract | |
| dcterms.bibliographicCitation | Bochkanov, S., ALGLIB, , http://alglib.net, Accessed 26 Apr 2016 | |
| dcterms.bibliographicCitation | Broomhead, D., Lowe, D., Multivariable functional interpolation and adaptive networks (1988) Complex Syst, 2, pp. 321-355 | |
| dcterms.bibliographicCitation | Cortes, C., Vapnik, V., Support-vector networks. (1995) Mach. Learn, 20 (3), pp. 273-297. , http://dx.doi.org/10.1007/BF00994018 | |
| dcterms.bibliographicCitation | El-Gayar, N., Hendawi, A., Zakhary, A., El-Shishiny, H., A proposed decision support model for hotel room revenue management. (2008) ICGST Int. J. Artif. Intell. Mach. Learn, 8 (1), pp. 23-28 | |
| dcterms.bibliographicCitation | Gilliland, M., Sglavo, U., Tashman, L., (2016) Business Forecasting: Practical Problems and Solutions, , Wiley, Hoboken | |
| dcterms.bibliographicCitation | Hoerl, A.E., Kennard, R.W., Ridge regression: Biased estimation for nonorthogonal problems (2000) Technometrics, 42 (1), pp. 80-86. , http://dx.doi.org/10.2307/1271436 | |
| dcterms.bibliographicCitation | Law, R., Au, N., A neural network model to forecast Japanese demand for travel to Hong Kong (1999) Tourism Manag, 20 (1), pp. 89-97 | |
| dcterms.bibliographicCitation | Lee, A.O., (1990) Airline Reservations Forecasting: Probabilistic and Statistical Models of the Booking Process., , Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA | |
| dcterms.bibliographicCitation | Murphy, K.P., (2012) Machine Learning: A Probabilistic Perspective, , The MIT Press, Cambridge | |
| dcterms.bibliographicCitation | Phumchusri, N., Mongkolku, P., Hotel room demand forecasting via observed reservation information (2012) Proceedings of the Asia Pacific Industrial Engineering & Management Systems Conference, pp. 1978-1985. , Kachitvichyanukul, V., Luong, H., Pitakaso, R. (eds.) | |
| dcterms.bibliographicCitation | Rajopadhye, M., Ghalia, M.B., Wang, P.P., Baker, T., Eister, C.V., Forecasting uncertain hotel room demand. (2001) Inf. Sci., 132 (1-4), pp. 1-11. , http://dx.doi.org/10.1016/S0020-0255(00)00082-7 | |
| dcterms.bibliographicCitation | Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning internal representations by error propagation (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, pp. 318-362. , http://dl.acm.org/citation.cfm?id=104279.104293, MIT Press, Cambridge | |
| dcterms.bibliographicCitation | Weatherford, L.R., Kimes, S.E., A comparison of forecasting methods for hotel revenue management (2003) Int. J. Forecast, 19 (3), pp. 401-415 | |
| dcterms.bibliographicCitation | Zakhary, A., El Gayar, N., Atiya, A.F., A comparative study of the pickup method and its variations using a simulated hotel reservation data. (2008) ICGST Int. J. Artif. Intell. Mach. Learn, 8, pp. 15-21 | |
| dspace.entity.type | Publication | |
| oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 |