Publicación:
A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry

datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
dc.audienceInvestigadoresspa
dc.contributor.authorRomero-Conrado, Alfonso R.
dc.contributor.authorOchoa-González, Olmedo
dc.contributor.authorQuintero-Arango, Humberto
dc.contributor.authorVargas, Ximena
dc.contributor.authorGatica, Gustavo
dc.contributor.authorCoronado Hernández, Jairo Rafael
dc.date.accessioned2020-10-30T16:14:10Z
dc.date.available2020-10-30T16:14:10Z
dc.date.issued2020-05-22
dc.date.submitted2020-10-29
dc.description.abstractChemical industries usually involve continuous and large-scale production processes that require demanding inventory control systems. This paper aims to show the results of the implementation of a mixed-integer programming model (MIP) based on the Generic Materials and Operations Planning Problem (GMOP) for optimizing the inventory turnover in a fertilizer company. Results showed significant improvements for Inventory Turnover Ratios and overall costs when compared with an empirical production planning method.spa
dc.format.extent11 páginas
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCoronado-Hernández J.R., Romero-Conrado A.R., Ochoa-González O., Quintero-Arango H., Vargas X., Gatica G. (2020) A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry. In: Saeed K., Dvorský J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science, vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_12spa
dc.identifier.doi10.1007/978-3-030-47679-3_12
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.isbn978-3-030-47678-6
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9515
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/978-3-030-47679-3_12
dc.language.isoengspa
dc.publisher.placeCartagena de Indiasspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.sourceLecture Notes in Computer Science, vol 12133.spa
dc.sourceComputer Information Systems and Industrial Management - 19th International Conference, CISIM 2020, Proceedings. 134.145spa
dc.subject.keywordsInventory turnoverspa
dc.subject.keywordsProduction planningspa
dc.subject.keywordsGMOPspa
dc.subject.keywordsFertilizersspa
dc.subject.keywordsChemical industryspa
dc.subject.keywordsOptimizationspa
dc.titleA Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industryspa
dc.typeOtrosspa
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dcterms.bibliographicCitationCalcium Nitrate - an overview|ScienceDirect Topics. https://www.sciencedirect.com/topics/chemistry/calcium-nitratespa
dcterms.bibliographicCitationNPK Fertilizers - an overview|ScienceDirect Topics. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/npk-fertilizersspa
dcterms.bibliographicCitationAllman, A., Palys, M.J., Daoutidis, P.: Scheduling-informed optimal design of systems with time-varying operation: a wind-powered ammonia case study. AIChE J. 65(7) (2019). https://doi.org/10.1002/aic.16434spa
dcterms.bibliographicCitationAmaran, S., et al.: Long-term turnaround planning for integrated chemical sites. Comput. Chem. Eng. 72, 145–158 (2015). https://doi.org/10.1016/j.compchemeng.2014.08.003spa
dcterms.bibliographicCitationBurawat, P.: Guidelines for improving productivity, inventory, turnover rate, and level of defects in manufacturing industry. Int. J. Econ. Perspect. 10(4), 88–95 (2016)spa
dcterms.bibliographicCitationCastillo, P.C., Castro, P.M., Mahalec, V.: Multiperiod inventory pinch algorithm for integrated planning and scheduling of oil refineries. In: Computing and Systems Technology Division 2016 - Core Programming Area at the 2016 AIChE Annual Meeting, pp. 402–404 (2016)spa
dcterms.bibliographicCitationCunha, A.L., Santos, M.O.: Mathematical modelling and solution approaches for production planning in a chemical industry. Pesquisa Operacional 37(2), 311–331 (2017). https://doi.org/10.1590/0101-7438.2017.037.02.0311spa
dcterms.bibliographicCitationDziurzanski, P., Zhao, S., Swan, J., Indrusiak, L.S., Scholze, S., Krone, K.: Solving the multi-objective flexible job-shop scheduling problem with alternative recipes for a chemical production process. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 33–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_3spa
dcterms.bibliographicCitationGarcia-Sabater, J.P., Maheut, J., Marin-Garcia, J.A.: A new formulation technique to model materials and operations planning: the generic materials and operations planning (GMOP) problem. Eur. J. Ind. Eng. 7(2), 119–147 (2013). https://doi.org/10.1504/EJIE.2013.052572spa
dcterms.bibliographicCitationKwak, J.K.: Analysis of inventory turnover as a performance measure in manufacturing industry. Processes 7(10) (2019).spa
dcterms.bibliographicCitationLi, D., Zhang, X.: How time horizons and arbitrage cost influence the turnover premium? Appl. Econ. 51(44), 4833–4848 (2019). https://doi.org/10.1080/00036846.2019.1602713spa
dcterms.bibliographicCitationMaheut, J., Garcia-Sabater, J.P.: Algorithm for complete enumeration based on a stroke graph to solve the supply network configuration and operations scheduling problem. J. Ind. Eng. Manage. 6(3 SPL.ISS), 779–795 (2013). https://doi.org/10.3926/jiem.550spa
dcterms.bibliographicCitationMaheut, J., Garcia-Sabater, J.P., Mula, J.: The generic materials and operations planning (GMOP) problem solved iteratively: a case study in multi-site context. In: Frick, J., Laugen, B.T. (eds.) APMS 2011. IAICT, vol. 384, pp. 66–73. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33980-6_8spa
dcterms.bibliographicCitationMaheut, J., Garcia-Sabater, J.P.: A parallelizable heuristic for solving the generic materials and operations planning in a supply chain network: a case study from the automotive industry. IFIP Adv. Inf. Commun. Technol. 397, 151–157 (2013). https://doi.org/10.1007/978-3-642-40352-1_20spa
dcterms.bibliographicCitationMostafaei, H., Harjunkoski, I.: Continuous-time scheduling formulation for multipurpose batch plants. AIChE J. 66(2) (2020). https://doi.org/10.1002/aic.16804spa
dcterms.bibliographicCitationNugroho, Y.K., Zhu, L.: An integration of algal biofuel production planning, scheduling, and order-based inventory distribution control systems. Biofuels, Bioprod. Biorefin. 13(4), 920–935 (2019). https://doi.org/10.1002/bbb.1982spa
dcterms.bibliographicCitationOdongo, I., Nag, B.: Achieving quality by rapid inventory turnover in the supply chain. Int. J. Prod. Qual. Manage. 19(2), 209–241 (2016). https://doi.org/10.1504/IJPQM.2016.078888spa
dcterms.bibliographicCitationOtashu, J.I., Baldea, M.: Scheduling chemical processes for frequency regulation. Appl. Energy 260 (2020). https://doi.org/10.1016/j.apenergy.2019.114125spa
dcterms.bibliographicCitationPacheco Velásquez, E.A.: Un modelo para la optimización de políticas de inventario conjuntas en cadenas de suministro. INGE CUC 9(1), 11–23 (2013). http://revistascientificas.cuc.edu.co/index.php/ingecuc/article/view/105spa
dcterms.bibliographicCitationReetz, H.F.: Fertilizantes e seu Uso Eficiente, vol. 2 (2016). www.anda.org.brspa
dcterms.bibliographicCitationRomero-Conrado, A.R., Coronado-Hernandez, J.R., Rius-Sorolla, G., García-Sabater, J.P.: A Tabu list-based algorithm for capacitated multilevel IoT-sizing with alternate bills of materials and co-production environments. Appl. Sci. (Switz.) 9(7), 1464 (2019). https://doi.org/10.3390/app9071464spa
dcterms.bibliographicCitationSabah, B., Nikolay, T., Sylverin, K.T.: Production planning under demand uncertainty using Monte Carlo simulation approach: a case study in fertilizer industry. In: Proceedings of the 2019 International Conference on Industrial Engineering and Systems Management, IESM 2019, pp. 1–6. Institute of Electrical and Electronics Engineers (IEEE), January 2019). https://doi.org/10.1109/IESM45758.2019.8948112spa
dcterms.bibliographicCitationTalay, I., Özdemir-Akyıldırım, Ö.: Optimal procurement and production planning for multi-product multi-stage production under yield uncertainty. Eur. J. Oper. Res. 275(2), 536–551 (2019). https://doi.org/10.1016/j.ejor.2018.11.069spa
dcterms.bibliographicCitationWiemer, P.: Production planning and scheduling in chemical and pharmaceutical industry. In: European Control Conference, ECC 1999 - Conference Proceedings, pp. 4836–4841 (2015). https://doi.org/10.23919/ecc.1999.7100102spa
dcterms.bibliographicCitationYang, L.: Design of production management system in ERP of coal chemical industry. Chem. Eng. Trans. 65, 475–480 (2018). https://doi.org/10.3303/CET1865080spa
dcterms.bibliographicCitationZheng, H.: Chemical enterprise production management system based on ERP. Chem. Eng. Trans. 62, 763–768 (2017). https://doi.org/10.3303/CET1762128spa
dspace.entity.typePublication
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
relation.isAuthorOfPublicationa0b8f282-9f67-48cb-a2c0-1ae5f8791330
relation.isAuthorOfPublication.latestForDiscoverya0b8f282-9f67-48cb-a2c0-1ae5f8791330

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52.pdf
Tamaño:
69.41 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.11 KB
Formato:
Item-specific license agreed upon to submission
Descripción: