Publicación:
Mapping dispersed houses in rural areas of Colombia by exploiting planet satellite images with convolutional neural networks

datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
dc.audienceInvestigadoresspa
dc.contributor.authorArrechea-Castillo, Darwin Alexis
dc.contributor.authorMuñoz Ordóñez, Julián Fernando
dc.contributor.authorPencue-Fierro, Edgar Leonairo
dc.contributor.authorSánchez-Barrera, Estiven
dc.contributor.authorSolano Correa, Yady Tatiana
dc.date.accessioned2024-09-12T14:03:23Z
dc.date.available2024-09-12T14:03:23Z
dc.date.issued2023-06-15
dc.date.submitted2024-09-11
dc.description.abstractThe Sustainable Development Goal (SDG) number 11 aims at making cities and human settlements more inclusive, safe, resilient, and sustainable. Complying with SDG 11 is a difficult task, especially when considering rural settlements where: (i) population settles in a dispersed manner; and (ii) geography complexity and social dynamics of the area make it difficult to monitor and capture data. One example of such areas can be found in the South-West of Colombia, in the Las Piedras River sub-basin. The National Administrative Department of Statistics in Colombia (DANE in Spanish) aims at mapping the population and houses in dispersed and difficult-to-access rural settlements in an accurate and continuous way. Nevertheless, there are several difficulties (derived from the in-situ way of collecting the data) that prevent such data from being generated. This research presents a methodology to carry out an updated mapping of rural areas with high spatial resolution data coming from PlanetScope (3m). Such a mapping considers the dynamics of housing growth, focusing on dispersed and difficult-to-access rural settlements. To this aim, Convolutional Neural Networks (CNNs) are used together with PlanetScope data, allowing to account for average houses size (≥12𝑚����2 ) in the study area. Preliminary results show a detection accuracy above 95%, in average, according to geography complexityspa
dc.format.extent9 páginas
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationD.A. Arrechea-Castillo; Y. T. Solano-Correa; J.F. Muñoz-Ordóñez; E.L. Pencue-Fierro; E. Sánchez-Barrera, "Mapping dispersed houses in rural areas of Colombia by exploiting planet satellite images with convolutional neural networks," in Proc. SPIE 15525, Geospatial Informatics XIII, 1252503 (15 June 2023). DOI: https://doi.org/10.1117/12.2664029.spa
dc.identifier.doi10.1117/12.2664029
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12734
dc.language.isoengspa
dc.publisher.facultyCiencias Básicasspa
dc.publisher.placeCartagena de Indiasspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.sourceSPIE 15525, Geospatial Informatics XIIIspa
dc.subject.armarcLEMB
dc.subject.keywordsRural settelmentspa
dc.subject.keywordsDeep learningspa
dc.subject.keywordsRemote sensingspa
dc.subject.keywordsPlanetScopespa
dc.subject.keywordsSDGsspa
dc.titleMapping dispersed houses in rural areas of Colombia by exploiting planet satellite images with convolutional neural networksspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_c94fspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dcterms.bibliographicCitationUnited Nations., “The Global Movement for Our Children’s FThe Global Challenge for Government Transparency: The Sustainable Development Goals (SDG) 2030 Agendauture- World Top 20 Project,” Educate Every Child on the Planet: The World Top 20 Project, 19 October 2022, <https://worldtop20.org/global-movement> (19 October 2022 ).spa
dcterms.bibliographicCitationYamasaki, K. and Yamada, T., “A framework to assess the local implementation of Sustainable Development Goal 11,” Sust. Cities Soc. 84, 104002 (2022).spa
dcterms.bibliographicCitationAquilino, M., Adamo, M., Blonda, P., Barbanente, A. and Tarantino, C., “Improvement of a Dasymetric Method for Implementing Sustainable Development Goal 11 Indicators at an Intra-Urban Scale,” 14, Remote Sensing 13(14), 2835 (2021).spa
dcterms.bibliographicCitationRuiz O., D. M., Idrobo M., J. P., Otero S., J. D. and Figueroa C., A., “Effects of Productive Activities on the Water Quality for Human Consumption in an Andean Basin, a Case Study,” Revista Internacional de Contaminación Ambiental 33(3), 361–375 (2017).spa
dcterms.bibliographicCitationRoncancio, D. J., Cutter, S. L. and Nardocci, A. C., “Social vulnerability in Colombia,” Int. J. Disaster Risk Reduct. 50, 101872 (2020).spa
dcterms.bibliographicCitation“Departamento Administrativo Nacional de Estadistica (DANE).”, <https://www.dane.gov.co/> (11 April 2023 ).spa
dcterms.bibliographicCitationDepartamento Administrativo Nacional de Eestadística (DANE)., “Censo Nacional de Población y Vivienda 2018,” DANE - Información Para Todos, <https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/ censo-nacional-de-poblacion-y-vivenda-2018> (30 October 2022 ).spa
dcterms.bibliographicCitationKaplan, G. and Kaplan, O., “PlanetScope Imagery for Extracting Building Inventory Information,” 1, Environmental Sciences Proceedings 5(1), 19 (2020).spa
dcterms.bibliographicCitationChuvieco, E., [Fundamentals of satellite remote sensing: an environmental approach], Taylor & Francis (2016).spa
dcterms.bibliographicCitationCamps-Valls, G., Tuia, D., Zhu, X. X. and Reichstein, M., [Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences, 1st ed.], Wiley (2021).spa
dspace.entity.typePublication
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
relation.isAuthorOfPublicationd2b66d84-5824-4ab1-b139-6199d229ef6e
relation.isAuthorOfPublication.latestForDiscoveryd2b66d84-5824-4ab1-b139-6199d229ef6e

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2023-C-Mapping dispersed houses in rural areas of Colombia by exploiting planet satellite images with convolutional neural networks_1252503.pdf
Tamaño:
958.1 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.11 KB
Formato:
Item-specific license agreed upon to submission
Descripción: