Publicación: Automated depression detection in text data: leveraging lexical features, phonesthemes embedding, and roberta transformer model
Portada
Citas bibliográficas
Código QR
Métricas
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor
Tipo de Material
Fecha
Citación
Título de serie/ reporte/ volumen/ colección
Es Parte de
Resumen en español
Indexed keywords SciVal Topics Metrics Funding details Abstract Depression is a prevalent mental disorder characterized by persistent sadness, lack of interest, and diminished pleasure. Detecting depression is crucial for timely intervention and support. In this paper, we address the task of depression detection in text data, focusing on binary classification and regression. We present our approach, leveraging a dataset comprising labeled messages from Telegram groups related to mental disorders. We begin by exploring the existing literature on depression detection, highlighting the challenges faced and the methods employed. Our approach involves data pre-processing, lexical feature extraction, phonesthemes embedding, and using the RoBERTa transformer model. We achieved promising results in the training phase through rigorous experimentation and model refinement. However, we encountered challenges upon evaluating our approach in the MentalRiskEs evaluation. We identified areas for improvement, particularly in latency and speed of detection for real-time monitoring of depression-related risks. This research contributes to the ongoing efforts in automating depression detection and provides insights into the potential of text analysis techniques for mental health assessment. We remain committed to further enhancing our methodology and advancing the field to improve the well-being of individuals affected by depression.
PDF
FLIP 
