Publicación:
Simulation and optimisation using a digital twin for resilience-based management of confined aquifers

dc.contributor.authorCohen Manrique, Carlos
dc.contributor.authorVilla Ramírez, José Luis
dc.contributor.authorCamacho-Leon, Sergio
dc.contributor.authorSolano Correa, Yady Tatiana
dc.contributor.authorÁlvarez Month, Alex A.
dc.contributor.authorCoronado Hernández, Óscar Enrique
dc.contributor.researchgroupGrupo de Investigación Física Aplicada y Procesamiento de Imágenes y Señales- FAPIS
dc.date.accessioned2025-07-23T13:17:26Z
dc.date.issued2025-06-30
dc.descriptionIncluye mapas, gráficos, tablas
dc.description.abstractEfficient management of groundwater resources is essential for environmental sustainability. This study introduces the development and application of a digital twin (DT) for confined aquifers to optimise water extraction and ensure long-term sustainability. A resilience-based control model was implemented to manage the Morroa Aquifer (Colombia). This model integrated historical, hydrogeological, and climatic data acquired from in-situ sensors and satellite remote sensing. Several heuristic methods were employed to optimise the parameters of the objective function, which focused on managing water extraction in aquifer wells: grid search, genetic algorithms (GA), and particle swarm optimisation (PSO). The results indicated that the PSO algorithm yielded the lowest root mean square error (RMSE), achieving an optimal extraction rate of 8.3 l/s to maintain a target dynamic water level of 58.5 m. Furthermore, the model demonstrated the unsustainability of current extraction rates, even under high-rainfall conditions, highlighting the necessity for revising existing water extraction strategies to safeguard aquifer sustainability. To showcase its practical functionality, a DT prototype was deployed in a well within the Morroa piezometric network (Sucre, Colombia). This prototype utilised an ESP32 microcontroller and various sensors (DS18B20, SKU-SEN0161, SKU-DFR0300, SEN0237-A) to monitor water level, pH, dissolved oxygen, and temperature. The implementation of this DT proved to be a crucial tool for the efficient management of water resources. The proposed methodology provided key information to support decision-making by environmental management entities, thereby optimising monitoring and control processes.
dc.description.researchareaControl de la contaminación de los recursos (agua, aire y suelo)
dc.format.extent26 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.citationCohen-Manrique, C. S., Villa-Ramírez, J. L., Camacho-León, S., Solano-Correa, Y. T., Alvarez-Month, A. A., & Coronado-Hernández, O. E. (2025). Simulation and Optimisation Using a Digital Twin for Resilience-Based Management of Confined Aquifers. Water, 17(13), 1973. https://doi.org/10.3390/w17131973
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14107
dc.language.isoeng
dc.publisherWater 2025, 17(13)
dc.publisher.placeColombia
dc.relation.referencesKarn, A.; Kumar, S. The Sustainable Development Goals: A Global Agenda for Transformative Change Towards a Sustainable World. In New Paradigms of Sustainability in the Contemporary Era; CSMFL Publications: Jagadhri, India, 2024; p. 70. Available online: https://books.csmflpublications.com/book-9788195732289/ (accessed on 24 June 2025).
dc.relation.referencesMohan, C.; Gleeson, T.; Forstner, T.; Famiglietti, J.S.; de Graaf, I. Quantifying Groundwater’s Contribution to Regional Environmental-Flows in Diverse Hydrologic Landscapes. Water Resour. Res. 2023, 59, 6.
dc.relation.referencesdu Plessis, A. Water resources from a global perspective. In South Africa’s Water Predicament: Freshwater’s Unceasing Decline; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–25.
dc.relation.referencesBiswas, A.K.; Tortajada, C. Groundwater: An unseen, overused, and unappreciated resource. Int. J. Water Resour. Dev. 2024, 40, 1–6.
dc.relation.referencesSun, L.; Wang, X.; Wang, S.; Sun, W.; Wang, J.; Di, H. Experimental study on soil deformation caused by overexploitation of groundwater. Water Environ. Res. 2024, 96, e11111.
dc.relation.referencesMialyk, O.; Schyns, J.F.; Booij, M.J.; Su, H.; Hogeboom, R.J.; Berger, M. Water footprints and crop water use of 175 individual crops for 1990–2019 simulated with a global crop model. Sci. Data 2024, 11, 206.
dc.relation.referencesPérez, A.J.; Hurtado-Patiño, J.; Herrera, H.M.; Carvajal, A.F.; Pérez, M.L.; Gonzalez-Rojas, E.; Pérez-García, J. Assessing sub-regional water scarcity using the groundwater footprint. Ecol. Indic. 2019, 96, 32–39
dc.relation.referencesHera-Portillo, Á.D.L.; López-Gutiérrez, J.; Mayor, B.; López-Gunn, E.; Henriksen, H.J.; Gejl, R.N.; Martínez-Santos, P. An initial framework for understanding the resilience of aquifers to groundwater pumping. Water 2021, 13, 519.
dc.relation.referencesKpegli, K.A.R.; Alassane, A.; van der Zee, S.E.; Boukari, M.; Mama, D. Development of a conceptual groundwater flow model using a combined hydrogeological, hydrochemical and isotopic approach: A case study from southern Benin. J. Hydrol. Reg. Stud. 2018, 18, 50–67.
dc.relation.referencesYidana, S.M.; Dzikunoo, E.A.; Tetteh, J.D.; Mejida, R.A. Multiple Conceptual Model Approach for Assessing Groundwater Resources Sustainability Under Multiple Stresses. Water Resour. Manag. 2024, 38, 173–191.
dc.relation.referencesAtanacković, N.; Štrbački, J.; Živanović, V.; Davidović, J.; Gardijan, S.; Stojadinović, S. Hydrochemistry-Based Statistical Model for Sourcing Groundwater Inrush into Underground Mining Works: A Case Study in Eastern Serbia. Mine Water Environ. 2024, 38, 1–13.
dc.relation.referencesCetina, M.; Taupin, J.D.; Gómez, S.; Patris, N. Hydrodynamic conceptual model of groundwater in the headwater of the Rio de Oro, Santander (Colombia) by geochemical and isotope tools. Water Supply 2020, 20, 1567–1579.
dc.relation.referencesYing, Z.; Tetzlaff, D.; Freymueller, J.; Comte, J.C.; Goldhammer, T.; Schmidt, A.; Soulsby, C. Developing a conceptual model of groundwater–Surface water interactions in a drought sensitive lowland catchment using multi-proxy data. J. Hydrol. 2024, 20, 628–649. [
dc.relation.referencesMustaquim, S.M. Utilizing Remote Sensing Data and ArcGIS for Advanced Computational Analysis in Land Surface Temperature Modeling and Land Use Property Characterisation. World J. Adv. Res. Rev. 2024, 21, 1496–1507
dc.relation.referencesAl-Kindi, K.M.; Al Nadhairi, R.; Al Akhzami, S. Dynamic Change in Normalised Vegetation Index (NDVI) from 2015 to 2021 in Dhofar, Southern Oman in Response to the Climate Change. Agriculture 2023, 13, 592.
dc.relation.referencesBajany, D.M.; Zhang, L.; Xia, X. Model predictive control for water management and energy security in arid/semiarid regions. J. Autom. Intell. 2022, 1, 100001.
dc.relation.referencesRamos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129.
dc.relation.referencesLi, W.; Ma, Z.; Li, J.; Li, Q.; Li, Y.; Yang, J. Digital twin smart water conservancy: Status, challenges, and prospects. Water 2024, 16, 2038.
dc.relation.referencesRodríguez-Alonso, C.; Pena-Regueiro, I.; García, Ó. Digital Twin Platform for Water Treatment Plants Using Microservices Architecture. Sensors 2024, 24, 1568.
dc.relation.referencesCavalieri, S.; Gambadoro, S. Digital Twin of a Water Supply System Using the Asset Administration Shell. Sensors 2024, 24, 1360.
dc.relation.referencesGiustolisi, O. Digital transition, digital twin and digital water: History, concepts and overview for the application to aqueducts. Digit. Water 2023, 1, 2313975.
dc.relation.referencesSingh, D.; Sharma, V. Proposing a digital twin-based sustainable water governance system for rural Indian villages. Int. J. Inf. Technol. 2025, 1, 628–649.
dc.relation.referencesHenriksen, H.J.; Schneider, R.; Koch, J.; Ondracek, M.; Troldborg, L.; Seidenfaden, I.K.; Stisen, S. A new digital twin for climate change adaptation, water management, and disaster risk reduction (HIP digital twin). Water 2022, 15, 25.
dc.relation.referencesAnker, C. Digital Twin Paradigms Towards Monitoring Insights for Deep Aquifer Pumps. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2023.
dc.relation.referencesMorales Ortega, L.R. A Digital Twin for Ground Water Table Monitoring. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2023
dc.relation.referencesMarshall, S.R.; Tran, T.N.D.; Tapas, M.R.; Nguyen, B.Q. Integrating artificial intelligence and machine learning in hydrological modeling for sustainable resource management. Int. J. River Basin Manag. 2025, 1–17.
dc.relation.referencesOlaleye, O.; Akintola, O.; Jımoh, R.; Gbadebo, O.; Faloye, O. Review and Comparative Study of Hydrological Models for Rainfall-Runoff Modelling. Int. J. Environ. Geoinform. 2023, 11, 119–129.
dc.relation.referencesNavarro Mercado, J.L. Monitoreo de las Obras Piloto de Recarga Artificial en el Acuífero Morroa, Departamento de Sucre, Colombia. Bachelor’s Thesis, Universidad Eafit, Antioquia, Colombia, 2020.
dc.relation.referencesInstituto de Hidrología Meteorología y Estudios Ambientales (IDEAM). Estudio Nacional del Agua 2022; Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM): Bogotá, Colombia, 2023.
dc.relation.referencesDuan, H.; Zhao, H.; Li, Q.; Xu, H.; Han, C. Estimation of Evapotranspiration Based on a Modified Penman–Monteith–Leuning Model Using Surface and Root Zone Soil Moisture. Water 2023, 15, 1418.
dc.relation.referencesChirouze, J.; Boulet, G.; Jarlan, L.; Fieuzal, R.; Rodriguez, J.C.; Ezzahar, J.; Chehbouni, G. Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. Hydrol. Earth Syst. Sci. 2014, 18, 1165–1188.
dc.relation.referencesGuerschman, J.P.; McVicar, T.R.; Vleeshower, J.; Van Niel, T.G.; Peña-Arancibia, J.L.; Chen, Y. Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. J. Hydrol. 2022, 11, 206.
dc.relation.referencesMu, Q.; Zhao, M.; Running, S.W. MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). Algorithm Theor. Basis Doc. Collect. 2013, 5, 600. Available online: https://eospso.nasa.gov/content/algorithm-theoretical-basis-documents (accessed on 25 February 2025).
dc.relation.referencesWang, C.; Liu, L.; Zhou, Y.; Liu, X.; Wu, J.; Tan, W.; Xiong, X. Comparison between satellite derived solar-induced chlorophyll fluorescence, NDVI and kndvi in detecting water stress for dense vegetation across southern China. Remote. Sens. 2013, 16, 1735.
dc.relation.referencesAnthony, T.; Kafy, A.A.; Hakeem, A.; Alsulamy, S.; Khedher, K.M.; Shohan, A. Spatial analysis of land cover changes for detecting environmental degradation and promoting sustainability in Abeokuta, South Nigeria. Kuwait J. Sci. 2024, 51, 100197.
dc.relation.referencesAdeyeri, O.E.; Folorunsho, A.H.; Ayegbusi, K.I.; Bobde, V.; Adeliyi, T.E.; Ndehedehe, C.E.; Akinsanola, A.A. Land surface dynamics and meteorological forcings modulate land surface temperature characteristics. Sustain. Cities Soc. 2024, 101, 105072.
dc.relation.referencesXing, Z.; Li, Z.L.; Duan, S.B.; Liu, X.; Zheng, X.; Leng, P.; Shang, G. Estimation of Daily Mean Land Surface Temperature at Global Scale Using Pairs of Daytime and Nighttime MODIS Instantaneous Observations. J. Photogramm. Remote. Sens. 2021, 178, 51–67.
dc.relation.referencesUniversidad Antonio Nariño (UAN). Modelo Hidrogeológico-Ambiental para el Departamento de Sucre. In Convenio Sistema Nacional de Regalías 036/2013; Universidad Antonio Nariño: Bogotá, Colombia, 2017
dc.relation.referencesWahab, F.; Al-Abadi, A.; Al-Ozeer, A. Groundwater depletion and annual groundwater recharge estimation in Nineveh Plain, Northern Iraq using GRACE, GLDAS, and field data. Model. Earth Syst. Environ. 2025, 11, 117
dc.relation.referencesHasan, M.S.U.; Saif, M.M.; Ahmad, N.; Rai, A.K.; Khan, M.A.; Aldrees, A.; Yaseen, Z.M. Spatiotemporal analysis of future trends in terrestrial water storage anomalies at different climatic zones of India using GRACE/GRACE-FO. Sustainability 2023, 15, 1572.
dc.relation.referencesAbdullahi, I.; Longo, S.; Samie, M. Towards a Distributed Digital Twin Framework for Predictive Maintenance in Industrial Internet of Things (IIoT). Sensors 2024, 24, 2663.
dc.relation.referencesBierkens, M.F.; van Beek, L.R.; Wanders, N. Gisser-Sánchez revisited: A model of optimal groundwater withdrawal under irrigation including surface–groundwater interaction. J. Hydrol. 2024, 635, 131145.
dc.relation.referencesCarsucre. Estudio Técnico del Acuífero Morroa. Grupo Aguas. 2017. Available online: https://carsucre.gov.co/wp-content/uploads/2019/01/ESTUDIOTECNICO_ACUIFERO-Morroa_Corregido_c.pdf (accessed on 10 February 2025).
dc.relation.referencesVergara, V. Manejo de suelos en el acuífero Morroa, Sucre, Colombia, alternativa para el desarrollo agrícola sostenible. Rev. Colomb. Cienc. Anim. Recia 2019, 11, 51–66.
dc.relation.referencesPacheco, D.; Villegas, P. Caracterización Hidráulica del Acuífero Morroa Utilizando Pruebas de Bombeo; Universidad de Sucre: Sincelejo, Colombia, 2003; p. 100.
dc.relation.referencesRodelo Bejarano, G.; Argumedo Vivas, H. Caracterización Hidroquímica y Bacteriológica del Acuifero de Morroa en los Municipios de Sampués; Sincelejo, Morroa, Corozal y Los Palmitos en el departamento de Sucre. 2002. Available online: https://agris.fao.org/search/en/providers/124942/records/67122c0f7f591113e2a4c47c (accessed on 2 February 2025).
dc.relation.referencesLópez Ramírez, S.E. Actualización del Modelo Numérico del Acuífero Morroa Utilizando Visual Modflow Flex. Available online: https://repositorio.uniandes.edu.co/entities/publication/23db7d3d-b189-478d-be67-1b6f104e88c5 (accessed on 2 February 2025).
dc.relation.referencesNazir, J.; Ali, M.; Sarwar, A.; Khan, S.; Rehman, K.; Fahim, B.; Iqbal, B. Delineation and validation of GIS-based groundwater potential zones under arid to semi-arid environment using multi-influence-factors approach. Geol. Ecol. Landscapes 2024, 24, 1–17.
dc.relation.referencesChukwuka, A.V.; Adegboyegun, A.D.; Oluwale, F.V.; Oni, A.A.; Omogbemi, E.D.; Adeogun, A.O. Microplastic dynamics and risk projections in West African coastal areas: Developing a vulnerability index, adverse ecological pathways, and mitigation framework using remote-sensed oceanographic profiles. Sci. Total Environ. 2024, 24, 175963.
dc.relation.referencesZowam, F.J.; Milewski, A.M. Groundwater Level Prediction Using Machine Learning and Geostatistical Interpolation Models. Water 2024, 16, 2771.
dc.relation.referencesEsposito, M.; Palma, L.; Belli, A.; Sabbatini, L.; Pierleoni, P. Recent advances in internet of things solutions for early warning systems: A review. Sensors 2022, 22, 2124.
dc.relation.referencesMichael, J.; Blankenbach, J.; Derksen, J.; Finklenburg, B.; Fuentes, R.; Gries, T.; Walther, G. Integrating models of civil structures in digital twins: State-of-the-Art and challenges. J. Infrastruct. Intell. Resil. 2024, 26, 100100.
dc.relation.referencesKumar, R.; Saxena, A. Smart Water Management and Resource Conservation. In Sustainable Smart Cities and the Future of Urban Development; Global Scientific Publishing: Faridabad, India, 2025; pp. 235–262.
dc.relation.referencesSajil Kumar, P.J.; Schneider, M.; Elango, L. The state-of-the-art estimation of groundwater recharge and water balance with a special emphasis on India: A critical review. Sustainability 2021, 14, 340.
dc.relation.referencesHesamfar, F.; Ketabchi, H.; Ebadi, T. Simulation-based multi-objective optimisation framework for sustainable management of coastal aquifers in semi-arid regions. J. Environ. Manag. 2023, 3382, 117785.
dc.relation.referencesSakamoto, S.; Nakamura, S.; Barolli, L.; Takizawa, M. A Comparison Study Between Cuckoo Search and Particle Swarm Optimisation Based Intelligent Systems for Optimisation of Mesh Routers in a Small-Scale WMN. In International Conference on P2P, Parallel, Grid, Cloud and Internet Computing; Springer Nature: San Benedetto del Tronto, Italy, 2024; pp. 121–132.
dc.relation.referencesSahoo, S.; Singha, C.; Govind, A.; Sharma, P. Review of aquifer storage and recovery opportunities and challenges in India. Environ. Earth Sci. 2025, 84, 122.
dc.relation.referencesSaad, S.; Javadi, A.A.; Chugh, T.; Farmani, R. Optimal management of mixed hydraulic barriers in coastal aquifers using multi-objective Bayesian optimisation. J. Hydrol. 2022, 612, 128021.
dc.relation.referencesCarsucre. Informe Técnico y de Seguimiento del acuífero Morroa; MADS-Colombia: Sincelejo, Colombia, 2023.
dc.relation.referencesAlvarez Cordero, A.A.; Schmalbach Amorocho, L.I. Estudio Sobre la Disponibilidad a Pagar Por Mantener el uso del Agua Potable del Acuífero Morroa; Universidad de Sucre: Sincelejo, Colombia, 2018.
dc.relation.referencesAzizi, H.R.; Azizi, H. Development of an integrated multi-objective approach to formulate optimal harvesting policies with the aim of sustainable management of groundwater resources: Study area: Varamin Plain. J. Hydroinform. 2023, 25, 469–490.
dc.relation.referencesKhan, M.; Almazah, M.M.; EIlahi, A.; Niaz, R.; Al-Rezami, A.Y.; Zaman, B. Spatial interpolation of water quality index based on Ordinary kriging and Universal kriging. Geomat. Nat. Hazards Risk 2023, 14, 2190853
dc.relation.referencesCarsucre. Informe de Gestión del Plan de Acción Institucional, PAI 2020–2023. 2022. Available online: https://carsucre.gov.co/wp-content/uploads/2023/03/INFORME-AVANCE-PAI-CARSUCRE-_31-DE-DICIEMBRE-2022_V3-MinAmbiente2.pdf (accessed on 14 February 2025).
dc.relation.referencesIDEAM. Anexo 7. Aguas Subterráneas. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). 2024. Available online: https://www.ideam.gov.co/sites/default/files/prensa/boletines/2024-08-23/anexo_7_aguas_subterraneas_0.pdf (accessed on 12 February 2025).
dc.relation.referencesDiaz Baldovino, M. Análisis de la Dinámica de Los Niveles de Agua del Acuífero de Morroa Desde los Pozos Operados por la Empresa Veolia, Aguas de la Sabana SAESP. Sincelejo, Colombia. 2024. Available online: https://repositorio.unicordoba.edu.co/entities/publication/ca5b2005-d4ac-4e12-9e8f-3d18415c4699 (accessed on 1 February 2025).
dc.relation.referencesServicio Geológico Colombiano (SGC). Memoria Técnica del Mapa de Aguas Subterráneas del Departamento de Sucre en Escala 1:250,000. Exploración y Evaluación de Aguas Subterráneas. Ingeominas: Bogotá, Colombia. 2025. Available online: https://recordcenter.sgc.gov.co/B3/12006025002778/documento/pdf/0101027781101000.pdf (accessed on 13 February 2025).
dc.relation.referencesCohen Manrique, C.; Villa, J.L.; Month, A.A.; Velilla, G.P. Application of Artificial Intelligence Tools, Data Processing, and Analysis in the Forecasting of Level and Flow Variables in Wells with Little Data from the Morroa Aquifer. In Workshop on Engineering Applications; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 228–239.
dc.relation.referencesLiang, J.; Ren, C.; Li, Y.; Yue, W.; Wei, Z.; Song, X.; Lin, X. Using enhanced gap-filling and Whittaker smoothing to reconstruct high spatiotemporal resolution NDVI time series based on Landsat 8, Sentinel-2, and MODIS imagery. ISPRS Int. J.-Geo-Inf. 2023, 12, 214.
dc.relation.referencesZhang, T.; Su, J.; Xu, Z.; Luo, Y.; Li, J. Sentinel-2 satellite imagery for urban land cover classification by optimized random forest classifier. Appl. Sci. 2021, 11, 543
dc.relation.referencesSapitang, M.; Dullah, H.; Latif, S.D.; Ng, J.L.; Huang, Y.F.; Malek, M.B.A.; Ahmed, A.N. Application of Integrated Artificial Intelligence Geographical Information System in Managing Water Resources: A Review. Remote. Sens. Appl. Soc. Environ. 2024, 35, 101236.
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.lembConfined aquifers
dc.subject.lembGroundwater resources -- Sustainable management
dc.subject.lembWater management -- Colombia
dc.subject.lembComputational models
dc.subject.lembEmbedded systems
dc.subject.lembEnvironmental sensors
dc.subject.lembSatellite technology -- Hydrology
dc.subject.odsODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
dc.titleSimulation and optimisation using a digital twin for resilience-based management of confined aquifers
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationecd4ff40-dc83-492b-89ac-7900e78d9877
relation.isAuthorOfPublication62d4fdb2-3ee9-4664-9a51-e2913dfb115e
relation.isAuthorOfPublicationdf241bbc-948c-4c12-9eef-31ffcc5aa338
relation.isAuthorOfPublicationd2b66d84-5824-4ab1-b139-6199d229ef6e
relation.isAuthorOfPublication482051d5-f72e-4f5c-ab50-931342cd5b83
relation.isAuthorOfPublication.latestForDiscoveryecd4ff40-dc83-492b-89ac-7900e78d9877

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2025-J-Simulation and Optimisation Using a Digital Twin for Resilience-Based Management of Confined Aquifers.pdf
Tamaño:
4.87 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: