Publicación:
Incorporation of the GRG-optimization method in the design and simulation of solar falling-film slurry photocatalytic reactors operated under turbulent regime

dc.contributor.authorCastilla Caballero, Deyler Rafael
dc.contributor.authorMartínez Castro, Valentina
dc.contributor.authorColina Márquez, Jose
dc.contributor.authorMachuca Martínez, Fiderman
dc.contributor.authorMedina Guerrero, Astrid
dc.contributor.researchgroupGrupo de Investigación Sistemas Ambientales e Hidráulicos (GISAH)
dc.contributor.seedbedsSemillero de Investigación en Reacciones y Procesos Fisicoquímicos para Remediación Ambiental
dc.coverage.temporalColombia, el mundo/2016-presente
dc.date.accessioned2025-09-17T20:36:02Z
dc.date.available2027-09-11
dc.date.issued2025-09-11
dc.descriptionContiene ilustraciones
dc.description.abstractPhotocatalytic reactor modeling has always been a complex duty involving several phenomena that must be described with powerful and accurate mathematical tools. Most efforts have been focused on simulating systems under controlled conditions and simplifying some models to obtain practical but reliable solutions. In this study, a falling-film solar pilotscale photoreactor operated in turbulent regime is modeled for phenol degradation using the Generalized Reduced Gradient (GRG) method embedded in the MS Excel® environment. A Visual Basic code was developed to integrate this function with the equations corresponding to the transport phenomena, photons' emission and absorption models, mass balance, and kinetic expressions. The simulations were carried out considering different catalyst loads and radiation intensities, obtaining results with satisfactory agreement with experimental data of a TiO2-based slurry falling-film photoreactor operating with solar radiation and under a turbulent regime (R2=0.84 – 0.99). The model fitting improved with the empirical adjustment of the LVRPA exponent, exhibiting the strong dependence of this parameter on the radiation intensity. These results demonstrated that reliable simulationscan be carried out by adapting different tools of low-cost software like MS Excel® for potential full-scale applications of a falling-film solar photoreactor.
dc.description.notesEl artículo presenta el modelado matemático de reactores fotocatalíticos de película descendente operando en régimen turbulento. La determinación de los parámetros cinéticos se realizó con el método del Gradiente Reducido Generalizado, a través de la programación en Visual Basic vinculado a MS Excel.
dc.description.researchareaControl de la contaminación de los recursos (agua, aire y suelo)
dc.description.researchareaSostenibilidad ambiental aplicada
dc.description.tableofcontentsHighlights Abstract Graphical Abstract Keywords Nomenclature 1. Introduction 2. Mathematical model of the falling-film reactor 3. Materials and methods 4. Results and discussion 5. Conclusions CRediT authorship contribution statement Declaration of Competing Interest Acknowledgments Appendix A. Supplementary material Data availability References
dc.description.technicalinfoSoftware requerido: Visual Basic de MS Excel
dc.format.extent1 página
dc.format.mimetypeapplication/pdf
dc.identifier.citationCastilla-Caballero, D., Martínez-Castro, V., Colina-Márquez, J., Machuca-Martínez, F., & Medina-Guerrero, A. (2025). Incorporation of the GRG-optimization method in the design and simulation of solar falling-film slurry photocatalytic reactors operated under turbulent regime. Applied Catalysis A: General, 708, 120562. https://doi.org/10.1016/J.APCATA.2025.120562
dc.identifier.doi10.1016/J.APCATA.2025.120562
dc.identifier.issn1873-3875
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14193
dc.language.isoeng
dc.publisherApplied Catalysis A: General
dc.relation.referencesX. Li et al. Chem. Catal. (2022)
dc.relation.referencesL. Wang et al. Environ. Res. (2025)
dc.relation.referencesR. Binjhade et al. J. Environ. Chem. Eng. (2022)
dc.relation.referencesQ. Wang et al. Chem. Eng. J. (2025)
dc.relation.referencesJ. Yang et al. Green. Energy Environ. (2024)
dc.relation.referencesJ.Q. Chen et al. Mol. Catal. (2025)
dc.relation.referencesM. Ahtasham Iqbal et al. Environ. Res. (2024)
dc.relation.referencesM. Hmoudah et al. J. Water Process Eng. (2025)
dc.relation.referencesB. Boga et al. J. Environ. Chem. Eng. (2024)
dc.relation.referencesI. Grčić et al. J. Environ. Chem. Eng. (2023)
dc.relation.referencesO. Samuel et al. J. Clean. Prod. (2023)
dc.relation.referencesS.M. Fouad et al. Case Stud. Chem. Environ. Eng. (2023)
dc.relation.referencesM. Muscetta et al. J. Environ. Chem. Eng. (2024)
dc.relation.referencesJ. Colina-Marquez et al. Appl. Math. Model (2016)
dc.relation.referencesB. Stephan et al. Chem. Eng. J. (2011)
dc.relation.referencesR. Acosta-Herazo et al. Chem. Eng. J. (2019)
dc.relation.referencesM.A. Mueses et al. Chem. Eng. J. (2013)
dc.relation.referencesA. Cabrera Reina et al. Appl. Catal. B (2015)
dc.relation.referencesM. Díaz et al. J. Photochem. Photobiol. A Chem. (2009)
dc.relation.referencesR.R. Chowdhury et al. J. Photochem. Photobiol. A Chem. (2011)
dc.relation.referencesD. Olivo-Alanís et al. Appl. Catal. B (2022)
dc.relation.referencesM.A. Mueses et al. Chem. Eng. J. (2013)
dc.relation.referencesC. Nchikou et al. Chem. Eng. J. (2025)
dc.relation.referencesJ. Moreno-SanSegundo et al. Chem. Eng. J. (2020)
dc.relation.referencesJ.C.G. Da Silva et al. Chem. Eng. Res. Des. (2023)
dc.relation.referencesA. Yusuf et al. Chem. Eng. Sci. (2023)
dc.relation.referencesJ.O.B. Lira et al. Chem. Eng. Process. Process. Intensif. (2020)
dc.relation.referencesA. Yusuf et al. Chem. Eng. Sci. (2021)
dc.relation.referencesG. Palmisano et al. Chem. Eng. J. (2015)
dc.relation.referencesH. Khorasanizadeh et al. Renew. Sustain. Energy Rev. (2016)
dc.relation.referencesJ. Zeng et al. Chem. Eng. Sci. (2022)
dc.relation.referencesI. a Mudawwar et al. Int. J. Multiph. Flow. (1986)
dc.relation.referencesP.G. Kosky Int. J. Heat. Mass Transf. (1971)
dc.relation.referencesW. Ambrosini et al. Int. J. Multiph. Flow. (2002)
dc.relation.referencesE. Da Riva et al. Int. J. Heat. Mass Transf. (2012)
dc.relation.referencesC.S. Turchi et al. J. Catal. (1990)
dc.relation.referencesJ. Marugán et al. Appl. Catal. B (2008)
dc.relation.referencesG. Li Puma et al. Appl. Catal. B (2010)
dc.relation.referencesC. Minero et al. Appl. Catal. B (2006)
dc.relation.referencesI. Prabha et al. Mater. Sci. Semicond. Process (2014)
dc.relation.referencesL.S. Lasdon et al. Comput. Chem. Eng. (1983)
dc.relation.referencesL.S. Lasdon et al. Comput. Chem. Eng. (1983)
dc.relation.referencesG. Palmisano et al. Chem. Eng. J. (2015)
dc.relation.referencesH. Ueda et al. Int. J. Heat. Mass Transf. (1977)
dc.rights© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.eng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cf
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química
dc.subject.lembReactores fotocatalíticos
dc.subject.lembFenómenos de transporte
dc.subject.lembFotocatálisis solar
dc.subject.lembReactores de película descendente
dc.subject.lembRadiación solar
dc.subject.lembTurbulencia (Dinámica de fluidos)
dc.subject.lembPhotocatalytic reactors
dc.subject.lembTransport phenomena
dc.subject.lembSolar photocatalysis
dc.subject.lembFalling-film reactors
dc.subject.lembSolar radiation
dc.subject.lembTurbulence (Fluid dynamics)
dc.subject.ocde2. Ingeniería y Tecnología
dc.subject.odsODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
dc.subject.odsODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
dc.subject.proposalFotocatalysis
dc.subject.proposalPhotocatalytic reactor
dc.subject.proposalModeling
dc.subject.proposalFalling-film photoreactor
dc.subject.proposalSolar radiation
dc.subject.proposalPhenol degradation
dc.subject.proposalTurbulent regime
dc.titleIncorporation of the GRG-optimization method in the design and simulation of solar falling-film slurry photocatalytic reactors operated under turbulent regime
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dcterms.audienceComunidad académica, ciudadanía global.
dspace.entity.typePublication
relation.isAuthorOfPublication5fbeba6b-d550-4278-a9d9-94814f362fe0
relation.isAuthorOfPublication.latestForDiscovery5fbeba6b-d550-4278-a9d9-94814f362fe0

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo para repositorio_GRG method in falling film photocatalytic reactors.pdf
Tamaño:
102.02 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: