Publicación: Incorporation of the GRG-optimization method in the design and simulation of solar falling-film slurry photocatalytic reactors operated under turbulent regime
dc.contributor.author | Castilla Caballero, Deyler Rafael | |
dc.contributor.author | Martínez Castro, Valentina | |
dc.contributor.author | Colina Márquez, Jose | |
dc.contributor.author | Machuca Martínez, Fiderman | |
dc.contributor.author | Medina Guerrero, Astrid | |
dc.contributor.researchgroup | Grupo de Investigación Sistemas Ambientales e Hidráulicos (GISAH) | |
dc.contributor.seedbeds | Semillero de Investigación en Reacciones y Procesos Fisicoquímicos para Remediación Ambiental | |
dc.coverage.temporal | Colombia, el mundo/2016-presente | |
dc.date.accessioned | 2025-09-17T20:36:02Z | |
dc.date.available | 2027-09-11 | |
dc.date.issued | 2025-09-11 | |
dc.description | Contiene ilustraciones | |
dc.description.abstract | Photocatalytic reactor modeling has always been a complex duty involving several phenomena that must be described with powerful and accurate mathematical tools. Most efforts have been focused on simulating systems under controlled conditions and simplifying some models to obtain practical but reliable solutions. In this study, a falling-film solar pilotscale photoreactor operated in turbulent regime is modeled for phenol degradation using the Generalized Reduced Gradient (GRG) method embedded in the MS Excel® environment. A Visual Basic code was developed to integrate this function with the equations corresponding to the transport phenomena, photons' emission and absorption models, mass balance, and kinetic expressions. The simulations were carried out considering different catalyst loads and radiation intensities, obtaining results with satisfactory agreement with experimental data of a TiO2-based slurry falling-film photoreactor operating with solar radiation and under a turbulent regime (R2=0.84 – 0.99). The model fitting improved with the empirical adjustment of the LVRPA exponent, exhibiting the strong dependence of this parameter on the radiation intensity. These results demonstrated that reliable simulationscan be carried out by adapting different tools of low-cost software like MS Excel® for potential full-scale applications of a falling-film solar photoreactor. | |
dc.description.notes | El artículo presenta el modelado matemático de reactores fotocatalíticos de película descendente operando en régimen turbulento. La determinación de los parámetros cinéticos se realizó con el método del Gradiente Reducido Generalizado, a través de la programación en Visual Basic vinculado a MS Excel. | |
dc.description.researcharea | Control de la contaminación de los recursos (agua, aire y suelo) | |
dc.description.researcharea | Sostenibilidad ambiental aplicada | |
dc.description.tableofcontents | Highlights Abstract Graphical Abstract Keywords Nomenclature 1. Introduction 2. Mathematical model of the falling-film reactor 3. Materials and methods 4. Results and discussion 5. Conclusions CRediT authorship contribution statement Declaration of Competing Interest Acknowledgments Appendix A. Supplementary material Data availability References | |
dc.description.technicalinfo | Software requerido: Visual Basic de MS Excel | |
dc.format.extent | 1 página | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Castilla-Caballero, D., Martínez-Castro, V., Colina-Márquez, J., Machuca-Martínez, F., & Medina-Guerrero, A. (2025). Incorporation of the GRG-optimization method in the design and simulation of solar falling-film slurry photocatalytic reactors operated under turbulent regime. Applied Catalysis A: General, 708, 120562. https://doi.org/10.1016/J.APCATA.2025.120562 | |
dc.identifier.doi | 10.1016/J.APCATA.2025.120562 | |
dc.identifier.issn | 1873-3875 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/14193 | |
dc.language.iso | eng | |
dc.publisher | Applied Catalysis A: General | |
dc.relation.references | X. Li et al. Chem. Catal. (2022) | |
dc.relation.references | L. Wang et al. Environ. Res. (2025) | |
dc.relation.references | R. Binjhade et al. J. Environ. Chem. Eng. (2022) | |
dc.relation.references | Q. Wang et al. Chem. Eng. J. (2025) | |
dc.relation.references | J. Yang et al. Green. Energy Environ. (2024) | |
dc.relation.references | J.Q. Chen et al. Mol. Catal. (2025) | |
dc.relation.references | M. Ahtasham Iqbal et al. Environ. Res. (2024) | |
dc.relation.references | M. Hmoudah et al. J. Water Process Eng. (2025) | |
dc.relation.references | B. Boga et al. J. Environ. Chem. Eng. (2024) | |
dc.relation.references | I. Grčić et al. J. Environ. Chem. Eng. (2023) | |
dc.relation.references | O. Samuel et al. J. Clean. Prod. (2023) | |
dc.relation.references | S.M. Fouad et al. Case Stud. Chem. Environ. Eng. (2023) | |
dc.relation.references | M. Muscetta et al. J. Environ. Chem. Eng. (2024) | |
dc.relation.references | J. Colina-Marquez et al. Appl. Math. Model (2016) | |
dc.relation.references | B. Stephan et al. Chem. Eng. J. (2011) | |
dc.relation.references | R. Acosta-Herazo et al. Chem. Eng. J. (2019) | |
dc.relation.references | M.A. Mueses et al. Chem. Eng. J. (2013) | |
dc.relation.references | A. Cabrera Reina et al. Appl. Catal. B (2015) | |
dc.relation.references | M. Díaz et al. J. Photochem. Photobiol. A Chem. (2009) | |
dc.relation.references | R.R. Chowdhury et al. J. Photochem. Photobiol. A Chem. (2011) | |
dc.relation.references | D. Olivo-Alanís et al. Appl. Catal. B (2022) | |
dc.relation.references | M.A. Mueses et al. Chem. Eng. J. (2013) | |
dc.relation.references | C. Nchikou et al. Chem. Eng. J. (2025) | |
dc.relation.references | J. Moreno-SanSegundo et al. Chem. Eng. J. (2020) | |
dc.relation.references | J.C.G. Da Silva et al. Chem. Eng. Res. Des. (2023) | |
dc.relation.references | A. Yusuf et al. Chem. Eng. Sci. (2023) | |
dc.relation.references | J.O.B. Lira et al. Chem. Eng. Process. Process. Intensif. (2020) | |
dc.relation.references | A. Yusuf et al. Chem. Eng. Sci. (2021) | |
dc.relation.references | G. Palmisano et al. Chem. Eng. J. (2015) | |
dc.relation.references | H. Khorasanizadeh et al. Renew. Sustain. Energy Rev. (2016) | |
dc.relation.references | J. Zeng et al. Chem. Eng. Sci. (2022) | |
dc.relation.references | I. a Mudawwar et al. Int. J. Multiph. Flow. (1986) | |
dc.relation.references | P.G. Kosky Int. J. Heat. Mass Transf. (1971) | |
dc.relation.references | W. Ambrosini et al. Int. J. Multiph. Flow. (2002) | |
dc.relation.references | E. Da Riva et al. Int. J. Heat. Mass Transf. (2012) | |
dc.relation.references | C.S. Turchi et al. J. Catal. (1990) | |
dc.relation.references | J. Marugán et al. Appl. Catal. B (2008) | |
dc.relation.references | G. Li Puma et al. Appl. Catal. B (2010) | |
dc.relation.references | C. Minero et al. Appl. Catal. B (2006) | |
dc.relation.references | I. Prabha et al. Mater. Sci. Semicond. Process (2014) | |
dc.relation.references | L.S. Lasdon et al. Comput. Chem. Eng. (1983) | |
dc.relation.references | L.S. Lasdon et al. Comput. Chem. Eng. (1983) | |
dc.relation.references | G. Palmisano et al. Chem. Eng. J. (2015) | |
dc.relation.references | H. Ueda et al. Int. J. Heat. Mass Transf. (1977) | |
dc.rights | © 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_f1cf | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 660 - Ingeniería química | |
dc.subject.lemb | Reactores fotocatalíticos | |
dc.subject.lemb | Fenómenos de transporte | |
dc.subject.lemb | Fotocatálisis solar | |
dc.subject.lemb | Reactores de película descendente | |
dc.subject.lemb | Radiación solar | |
dc.subject.lemb | Turbulencia (Dinámica de fluidos) | |
dc.subject.lemb | Photocatalytic reactors | |
dc.subject.lemb | Transport phenomena | |
dc.subject.lemb | Solar photocatalysis | |
dc.subject.lemb | Falling-film reactors | |
dc.subject.lemb | Solar radiation | |
dc.subject.lemb | Turbulence (Fluid dynamics) | |
dc.subject.ocde | 2. Ingeniería y Tecnología | |
dc.subject.ods | ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | |
dc.subject.ods | ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación | |
dc.subject.proposal | Fotocatalysis | |
dc.subject.proposal | Photocatalytic reactor | |
dc.subject.proposal | Modeling | |
dc.subject.proposal | Falling-film photoreactor | |
dc.subject.proposal | Solar radiation | |
dc.subject.proposal | Phenol degradation | |
dc.subject.proposal | Turbulent regime | |
dc.title | Incorporation of the GRG-optimization method in the design and simulation of solar falling-film slurry photocatalytic reactors operated under turbulent regime | |
dc.type | Artículo de revista | |
dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dcterms.audience | Comunidad académica, ciudadanía global. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5fbeba6b-d550-4278-a9d9-94814f362fe0 | |
relation.isAuthorOfPublication.latestForDiscovery | 5fbeba6b-d550-4278-a9d9-94814f362fe0 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo para repositorio_GRG method in falling film photocatalytic reactors.pdf
- Tamaño:
- 102.02 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.49 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: