Publicación:
Predictive power control for electric vehicle charging applications

datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
dc.audienceInvestigadoresspa
dc.contributor.authorGil-González, Walter
dc.contributor.authorSerra F.M.
dc.contributor.authorCampillo Jiménez, Javier Eduardo
dc.contributor.authorDomínguez Jiménez, Juan Antonio
dc.contributor.authorMontoya Giraldo, Oscar Danilo
dc.date.accessioned2021-02-16T15:08:04Z
dc.date.available2021-02-16T15:08:04Z
dc.date.issued2020-12-01
dc.date.submitted2021-02-12
dc.description.abstractThis paper presents a direct predictive power control (DPPC) design for vehicle charging applications. The proposed control design allows working in the Park's reference frame avoiding the usage of the phase-lock loops, which help increasing the reliability of the system. Direct power control allows defining active and reactive power references as function of the control objectives independently. In the case of the active, it is defined as function of the battery current or state-of-charge desired profiles, while reactive power can be projected as function of the grid requirements. Numerical results show that the proposed DPPC allows controlling active and reactive power regardless with minimum steady-state errors (e r ≤ 1%); in addition, the state-of-charge and the battery currents are controlled to evidence the applicability of the proposed DPPC design for tracking different desired references. All the numerical test are performed in MATLAB/simulink.spa
dc.format.extent6 páginas
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCitation & Abstract W. Gil-González, F. Serra, J. Dominguez, J. Campillo and O. Montoya, "Predictive Power Control for Electric Vehicle Charging Applications," 2020 IEEE ANDESCON, Quito, Ecuador, 2020, pp. 1-6, doi: 10.1109/ANDESCON50619.2020.9272192.spa
dc.identifier.doi10.1109/ANDESCON50619.2020.9272192
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10024
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9272192
dc.language.isoengspa
dc.publisher.placeCartagena de Indiasspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.source2020 IEEE ANDESCONspa
dc.subject.armarcLEMB
dc.subject.keywordsDirect predictive power controlspa
dc.subject.keywordsActive and reactive power managementspa
dc.subject.keywordsDiscrete control designspa
dc.subject.keywordsElectric vehicle charging applicationsspa
dc.subject.keywordsVoltage source convertersspa
dc.titlePredictive power control for electric vehicle charging applicationsspa
dc.typeDocumento de Conferenciaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_8544spa
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dcterms.bibliographicCitationA. Di Giorgio, F. Liberati and S. Canale, "Electric vehicles charging control in a smart grid: A model predictive control approach", Control Engineering Practice, vol. 22, pp. 147-162, 2014.spa
dcterms.bibliographicCitationA. Gusrialdi, Z. Qu and M. A. Simaan, "Scheduling and cooperative control of electric vehicles’ charging at highway service stations", 53rd IEEE Conference on Decision and Control, pp. 6465-6471, 2014.spa
dcterms.bibliographicCitationM. Yilmaz and P. T. Krein, "Review of the Impact of Vehicle-to-Grid Technologies on Distribution Systems and Utility Interfaces", IEEE Trans. Power Electron, vol. 28, no. 12, pp. 5673-5689, 2013.spa
dcterms.bibliographicCitationL. M. Fernández, F. Serra, C. D. Angelo and O. Montoya, "Control of a charging station for electric vehicles", J. Phys. Conf. Ser, vol. 1448, pp. 012013, jan 2020.spa
dcterms.bibliographicCitationF. M. Serra and C. H. De Angelo, "IDA-PBC control of a single-phase battery charger for electric vehicles with unity power factor", 2016 IEEE Conference on Control Applications (CCA), pp. 261-266, 2016.spa
dcterms.bibliographicCitationS. Haghbin, S. Lundmark, M. Alakula and O. Carlson, "Grid-Connected Integrated Battery Chargers in Vehicle Applications: Review and New Solution", IEEE Trans. Ind. Electron, vol. 60, no. 2, pp. 459-473, 2013.spa
dcterms.bibliographicCitationO. D. Montoya, W. J. Gil-González, A. Garcés, A. Escobar and L. F. Grisales-Noreña, "Nonlinear Control for Battery Energy Storage Systems in Power Grids", 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70, 2018.spa
dcterms.bibliographicCitationA. W. Danté, K. Agbossou, S. Kelouwani, A. Cardenas and J. Bouchard, "Online modeling and identification of plug-in electric vehicles sharing a residential station", International Journal of Electrical Power & Energy Systems, vol. 108, pp. 162-176, 2019.spa
dcterms.bibliographicCitationW. Gil-González, O. D. Montoya and A. Garces, "Direct power control of electrical energy storage systems: A passivity-based PI approach", Electr. Power Syst. Res, vol. 175, pp. 105885, 2019, [online] Available: http://www.sciencedirect.com/science/article/pii/S0378779619302044.spa
dcterms.bibliographicCitationW. Gil-González, O. D. Montoya and A. Garces, "Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach", International Journal of Electrical Power & Energy Systems, vol. 110, pp. 588-597, 2019.spa
dcterms.bibliographicCitationW. Gil-González, F. M. Serra, O. D. Montoya, C. A. Ramírez and C. Orozco-Henao, "Direct Power Compensation in AC Distribution Networks with SCES Systems via PI-PBC Approach", Symmetry, vol. 12, no. 4, pp. 666, apr 2020.spa
dcterms.bibliographicCitationW. Gil, O. D. Montoya, A. Garces et al., "Direct power control of electrical energy storage systems: A passivity-based PI approach", Electric Power Systems Research, vol. 175, pp. 105885, 2019.spa
dcterms.bibliographicCitationM. Zoghlami and F. Bacha, "Implementation of different strategies of direct power control", IREC2015 The Sixth International Renewable Energy Congress, pp. 1-6, 2015.spa
dcterms.bibliographicCitationJ. Rodriguez and P. Cortes, Predictive control of power converters and electrical drives, John Wiley & Sons, vol. 40, 2012.spa
dcterms.bibliographicCitationL. Wang, S. Chai, D. Yoo, L. Gan and K. Ng, PID and predictive control of electrical drives and power converters using MATLAB/Simulink, John Wiley & Sons, 2015.spa
dspace.entity.typePublication
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
relation.isAuthorOfPublicationd0c36d6a-8b2a-4d0e-b730-4e2cfe1973ab
relation.isAuthorOfPublicationa18f906f-f39a-4ca9-8d47-4fe82721bc99
relation.isAuthorOfPublicationd9da408b-34a8-4c9e-8469-43239d9d590b
relation.isAuthorOfPublication.latestForDiscoveryd0c36d6a-8b2a-4d0e-b730-4e2cfe1973ab

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
168.pdf
Tamaño:
81.73 KB
Formato:
Adobe Portable Document Format
Descripción:
Abstract

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.11 KB
Formato:
Item-specific license agreed upon to submission
Descripción: