Publicación:
Robot swarm aggregation using an improved Beeclust method

dc.contributor.authorGarcia Luis
dc.contributor.authorRíos Díaz, Yennifer Yuliana
dc.contributor.authorAcevedo Patiño, Óscar
dc.date.accessioned2025-09-16T19:09:50Z
dc.date.issued2025-05-03
dc.descriptionContiene ilustraciones, fotografías
dc.description.abstractSwarm robotics is a topic within multi-robot systems that aims to solve engineering problems by drawing inspiration from the behavior observed in nature by social animals such as ants, bees, fish school, among others. The main challenge in these systems is the design of the controller, which must operate at the level of the individual robot to achieve results at the level of the entire swarm. In previous works, various basic behaviors of social insects have been studied and classified, which have been adapted to the field of robotics to emulate and use in the implementation of controllers and problem-solving. Examples of these behaviors include aggregation, dispersion, and resource searching (foraging). In this project, a simulation implemented in Matlab is presented, which implements a modified version of the Beeclust algorithm, which emulates the aggregation behavior of newly born bees. The modifications made focus on two basic actions of the algorithm: linear velocity and rotation angle. These adjustments have resulted in a 30% improvement in the average aggregation time compared to the original algorithm.
dc.format.extent11 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.ark10.1007/s41315-025-00442-6
dc.identifier.citationRios, Y.Y., Acevedo, O. & García, L.L. Robot swarm aggregation using an improved Beeclust method. Int J Intell Robot Appl 9, 804–814 (2025). https://doi.org/10.1007/s41315-025-00442-6
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14190
dc.language.isoeng
dc.publisherInternational Journal of Intelligent Robotics and Applications (2025)
dc.relation.referencesAcevedo, O., Rios, Y.Y., Duque, J., Gomez, E., García, L.: A software for simulating robot swarm aggregation. In: FigueroaGarcía, J.C., Franco, C., Díaz-Gutierrez, Y., Hernández-Pérez, G. (eds.) Applied Computer Sciences in Engineering, pp. 386–399. Springer, Cham (2022a)
dc.relation.referencesAcevedo, O., Rios, Y.Y., García, L., Narvaez, D.: A study of the Beeclust algorithm for robot swarm aggregation. In: 2022 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT), pp. 1–6 (2022b). https://doi.org/10. 1109/ICMLANT56191.2022.9996514
dc.relation.referencesAkopov, A.S., Beklaryan, L.A., Beklaryan, A.L.: Cluster-based optimization of an evacuation process using a parallel bi-objective real-coded genetic algorithm. Cybern. Inf. Technol. 20(3), 45–63 (2020)
dc.relation.referencesAl-Obaidy, M., Al-Azawi, R.: Cluster-based algorithm for energy optimization of swarmed robots using swarm intelligence. In: 2019 Sixth HCT Information Technology Trends (ITT), pp. 202–207. IEEE (2019)
dc.relation.referencesAmjadi, A.S., Raoufi, M., Turgut, A.E.: A self-adaptive landmarkbased aggregation method for robot swarms. Adapt. Behav. (2021). https://doi.org/10.1177/1059712320985543
dc.relation.referencesArvin, F., Samsudin, K., Ramli, A.R., Bekravi, M.: Imitation of honeybee aggregation with collective behavior of swarm robots. Int. J. Comput. Intell. Syst. 4, 739–748 (2012). https://doi.org/10.1080/ 18756891.2011.9727825
dc.relation.referencesArvin, F., Turgut, A.E., Bazyari, F., Arikan, K.B., Bellotto, N., Yue, S.: Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method. Adapt. Behav. 22, 189–206 (2014). https:// doi.org/10.1177/1059712314528009
dc.relation.referencesArvin, F., Turgut, A.E., Krajnik, T., Rahimi, S., Okay, I.E., Yue, S., Watson, S., Lennox, B.: Phi Clust: pheromone-based aggregation for robotic swarms. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4288–4294 (2018). https://doi.org/ 10.1109/IROS.2018.8593961
dc.relation.referencesBayindir, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321 (2016). https://doi.org/10.1016/j.neucom.2015.05.116
dc.relation.referencesBodi, M., Thenius, R., Szopek, M., Schmickl, T., Crailsheim, K.: Interaction of robot swarms using the honeybee-inspired control algorithm BEECLUST. Math. Comput. Model. Dyn. Syst. 18, 87–100 (2012). https://doi.org/10.1080/13873954.2011.601420
dc.relation.referencesDuarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M., Christensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic surface robots. PLoS One 11(3), 0151834 (2016)
dc.relation.referencesHamann, H.: Swarm robotics: a formal approach. Swarm Robotics: A Formal Approach (2018). https://doi.org/10.1007/ 978-3-319-74528-2
dc.relation.referencesHamann, H., Schmickl, T., Wörn, H., Crailsheim, K.: Analysis of emergent symmetry breaking in collective decision making. Neural Comput. Appl. 21, 207–218 (2012)
dc.relation.referencesHamann, H., Wörn, H., Crailsheim, K., Schmickl, T.: Spatial macroscopic models of a bio-inspired robotic swarm algorithm. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 1415–1420 (2008). https://doi.org/10. 1109/IROS.2008.4651038
dc.relation.referencesKernbach, S., Thenius, R., Kernbach, O., Schmickl, T.: Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system. Adapt. Behav. 17, 237–259 (2009). https://doi.org/10. 1177/1059712309104966
dc.relation.referencesRamroop, S., Arvin, F., Watson, S., Carrasco-Gomez, J., Lennox, B.: A bio-inspired aggregation with robot swarm using real and simulated mobile robots. In: Giuliani, M., Assaf, T., Giannaccini, M.E. (eds.) Towards Autonomous Robotic Systems, pp. 317–329. Springer, Cham (2018)
dc.relation.referencesŞahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Swarm Robotics, pp. 10–20. Springer, Berlin, Heidelberg (2005)
dc.relation.referencesSchmickl, T., Hamann, H., Worn, H., Crailsheim, K.: Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Robot. Autonom. Syst. 57, 913–921 (2009a). https://doi. org/10.1016/J.ROBOT.2009.06.002
dc.relation.referencesSchmickl, T., Thenius, R., Moeslinger, C., Radspieler, G., Kernbach, S., Szymanski, M., Crailsheim, K.: Get in touch: cooperative decision making based on robot-to-robot collisions. Autonom. Agents Multi-Agent Syst. 18(1), 133–155 (2009b)
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.lembSwarm robotics
dc.subject.lembRobot kinematics
dc.subject.lembAlgorithms -- Simulation methods
dc.subject.lembComputational intelligence
dc.subject.lembMATLAB (Computer program language)
dc.subject.lembRobótica de enjambre
dc.subject.lembCinemática de robots
dc.subject.lembAlgoritmos -- Métodos de simulación
dc.subject.lembInteligencia computacional
dc.subject.lembMATLAB (Lenguaje de programación para computador)
dc.subject.proposalRobotics
dc.subject.proposalBeeclust
dc.subject.proposalAggregation
dc.subject.proposalRobot swarm
dc.subject.proposalOptimization
dc.titleRobot swarm aggregation using an improved Beeclust methodeng
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationc4d0305a-30bd-4968-9697-8fcfce660567
relation.isAuthorOfPublication0baf60e3-de4b-4695-93fc-1c3c4843f32c
relation.isAuthorOfPublication.latestForDiscoveryc4d0305a-30bd-4968-9697-8fcfce660567

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
paper oficial.pdf
Tamaño:
1.03 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: