Publicación: Optimizing treatment to control LDL cholesterol using machine learning
| dc.contributor.author | Boneu Yepez, Deiby | |
| dc.contributor.author | Sierra Porta, David | |
| dc.contributor.author | Morales Aguas, Liz | |
| dc.contributor.author | Manzur Jattin, Fernando | |
| dc.date.accessioned | 2026-02-17T13:50:44Z | |
| dc.date.issued | 2025-06-16 | |
| dc.description | Contiene gráficos | |
| dc.description.abstract | Introduction: Increased LDL cholesterol is one of the main risk factors for cardiovascular diseases; therefore, adequate therapy reduces the risk of developing cardiovascular disease. Artificial intelligence (AI) is a tool that can significantly help doctors select the optimal treatment aimed at each patient individually. Based on the above, the question arises: Which artificial intelligence model allows us to recommend the best treatment to control LDL levels according to the patient’s cardiovascular risk factor? Methodology: The performance of various machine learning models was compared to assess their ability to predict the best-individualized therapy for each patient according to their cardiovascular risk from a registry of patients at a clinic specializing in cardiovascular diseases. The Machine learning models used included: RandomForestClassifier (RFC), GradientBoostClassifier (GBC), AdaBoostClassifier (ABC), ExtraTreeClassifier (ETC), Decision Tree Classifier (DTC), KNN, Support Vector Machine (SVM), Multinomial Logistic Regression (MLR), and Naive Bayes Classifier (NBC). Population and sample: The records of 166 patients with any cardiovascular risk who had LDL alterations and used some therapeutic interventions were obtained. However, four medical records did not have creatinine levels; therefore, they were excluded, counting at the end with 162 observations. Of these, a sample of 115 patients who achieved the LDL therapeutic goal was obtained. Results: The Random Forest Classifier (RFC) and Gradient Boosting Classifier (GBC) demonstrated superior performance in classifying optimal LDL-lowering therapy. In contrast, Naïve Bayes Classifier (NBC) overestimated outcomes and was deemed unsuitable. Conclusions: Machine learning models, particularly Random Forest Classifier, provide valuable tools for optimizing LDL control in high-risk cardiovascular patients. These models enhance clinical decision-making by enabling personalized therapy selection based on patient-specific risk factors. | |
| dc.format.extent | 14 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Boneu Yepez, D., Sierra Porta, D., Morales Aguas, L., & Fernando, M. J. (2025). Optimizing treatment to control LDL cholesterol using machine learning. Computers in Biology and Medicine, 195. https://doi.org/10.1016/j.compbiomed.2025.110599 | |
| dc.identifier.doi | 10.1016/j.compbiomed.2025.110599 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/14328 | |
| dc.publisher | Computers in Biology and Medicine | |
| dc.relation.references | N. Townsend, L. Wilson, P. Bhatnagar, K. Wickramasinghe, M. Rayner, M. Nichols, Cardiovascular disease in Europe: epidemiological update 2016, Eur. Heart J. 37 (42) (2016) 3232–3245, https://doi.org/10.1093/eurheartj/ehw334. | |
| dc.relation.references | WHO, World health organization (WHO)-The top 10 causes of death. https://www. who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death, 2021 | |
| dc.relation.references | S. Yusuf, S. Hawken, S. Ounpuu, # T. Dans, A. Avezum, F. Lanas, L. Lisheng, Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study, Lancet 364 (9438) (2004) 937–952, https://doi.org/10.1016/S0140-6736(04)17018-9 | |
| dc.relation.references | B.A. Ference, H.N. Ginsberg, I. Graham, K.K. Ray, C.J. Packard, E. Bruckert, A. L. Catapano, Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the european atherosclerosis society consensus panel, Eur. Heart J. 38 (32) (2017) 2459–2472, https://doi.org/10.1093/eurheartj/ehx144. | |
| dc.relation.references | H. Tada, M.A. Kawashiri, M. Yamagishi, Comprehensive genotyping in dyslipidemia: mendelian dyslipidemias caused by rare variants and Mendelian randomization studies using common variants, J. Hum. Genet. 62 (4) (2017) 453–458, https://doi.org/10.1038/jhg.2016.159 | |
| dc.relation.references | E. Galve, A. Cordero, A. Cequier, E. Ruiz, J.R. Gonz! alez-Juanatey, Grado de control lipídico en pacientes coronarios y medidas adoptadas por los m!edicos. Estudio REPAR, Rev. Espanola ” Cardiol. 69 (10) (2016) 931–938, https://doi.org/10.1016/ j.recesp.2016.02.013 | |
| dc.relation.references | E.G. Díaz, D.R. Medina, O.M.M. ! Porras, J.L.C. Mateos, Determinants of inertia with lipid-lowering treatment in patients with type 2 diabetes mellitus, Endocrinología, Diabetes y Nutricion ! (English ed.) 66 (4) (2019) 223–231, https://doi.org/ 10.1016/j.endinu.2018.08 | |
| dc.relation.references | F. Lopez-Simarro, ! I. Moral, A. Aguado-Jodar, C. Cols-Sagarra, J. Mancera-Romero, M. Alonso-Fernandez, ! C. Brotons, The impact of therapeutic inertia and the degree of medication adherence on the control goals for patients with diabetes, Semergen 44 (8) (2017) 579–585, https://doi.org/10.1016/j.semerg.2017.10.002 | |
| dc.relation.references | F.Y. Man, C.X. Chen, Y.Y. Lau, C. King, Therapeutic inertia in the management of hyperlipidaemia in type 2 diabetic patients: a cross-sectional study in the primary care setting, Hong Kong Med. J. 22 (4) (2016) 356, https://doi.org/10.12809/ hkmj15 | |
| dc.relation.references | J. Pedro-Botet, X. Pinto, ! Colesterol LDL, cuanto m! as bajo mejor, Clín. Invest. Arterioscler. 31 (2019) 16–27, https://doi.org/10.1016/j.arteri.2019.10.003 | |
| dc.relation.references | F. Mach, C. Baigent, A.L. Catapano, K.C. Koskinas, M. Casula, L. Badimon, O. Wiklund, 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the task force for the management of dyslipidaemias of the European society of cardiology (ESC) and European atherosclerosis society (EAS), Eur. Heart J. 41 (1) (2020) 111–188, https://doi. org/10.1093/eurheartj/ehz455 | |
| dc.relation.references | F.J. Raal, E.A. Stein, R. Dufour, T. Turner, F. Civeira, L. Burgess, D. Gaudet, PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebocontrolled trial, Lancet 385 (9965) (2015) 331–340, https://doi.org/10.1016/ S0140-6736(14)61399-4 | |
| dc.relation.references | L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32, https://doi.org/ 10.10 | |
| dc.relation.references | J.L. Speiser, M.E. Miller, J. Tooze, E. Ip, A comparison of random forest variable selection methods for classification prediction modeling, Expert Syst. Appl. 134 (2019) 93–101, https://doi.org/10.1016/j.eswa.2019.05.028 | |
| dc.relation.references | Y. Zhang, M. Ni, C. Zhang, S. Liang, S. Fang, R. Li, Z. Tan, Research and application of AdaBoost algorithm based on SVM, in: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), IEEE, 2019, May, pp. 662–666, https://doi.org/10.1109/ITAIC.2019.8785556. | |
| dc.relation.references | I.H. Sarker, Machine learning: Algorithms, real-world applications and research directions, SN Computer Sci. 2 (3) (2021) 160, https://doi.org/10.1007/s42979- 021-00592-x | |
| dc.relation.references | A.S. Parvin, B. Saleena, An ensemble classifier model to predict credit scoringcomparative analysis, in: 2020 IEEE International Symposium on Smart Electronic Systems (iSES)(Formerly iNiS), IEEE, 2020, December, pp. 27–30, https://doi.org/ 10.1109/iSES50453.2020.00017, 10.1109/ | |
| dc.relation.references | B. Charbuty, A. Abdulazeez, Classification based on decision tree algorithm for machine learning, J. Appl. Sci. Technol. Trends 2 (1) (2021) 20–28, https://doi. org/10.38094/jastt20165 | |
| dc.relation.references | P. Thanh Noi, M. Kappas, Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery, Sensors 18 (1) (2017) 18, https://doi.org/10.3390/s18010018. | |
| dc.relation.references | F. Abramovich, V. Grinshtein, T. Levy, Multiclass classification by sparse multinomial logistic regression, IEEE Trans. Inf. Theor. 67 (7) (2021) 4637–4646, https://doi.org/10.48550/arXiv.2003.01951 | |
| dc.relation.references | D. Prabha, J. Aswini, B. Maheswari, R.S. Subramanian, R. Nithyanandhan, P. Girija, A survey on alleviating the naive bayes conditional Independence assumption, in: 2022 International Conference on Augmented Intelligence and Sustainable Systems, (ICAISS), Trichy, India, 2022, pp. 654–657, https://doi.org/ 10.1109/ICAISS55157.2022.10011103 | |
| dc.relation.references | W.H. Song, M. Park, RCC-Supporter: supporting renal cell carcinoma treatment decision-making using machine learning, BMC Med. Inf. Decis. Making 24 (Suppl 2) (2024) 259, https://doi.org/10.1186/s12911-024-02660-7. | |
| dc.relation.references | J.H. Han, S. Lee, B. Lee, O.K. Baek, S.L. Washington 3rd, A. Herlemann, P. E. Lonergan, P.R. Carroll, C.W. Jeong, M.R. Cooperberg, Explainable ML models for a deeper insight on treatment decision for localized prostate cancer, Sci. Rep. 13 (1) (2023) 11532, https://doi.org/10.1038/s41598-023-38162-1. | |
| dc.relation.references | E. Climent, A.M. Bea, D. Benaiges, A. ! Brea-Hernando, X. Pinto, ! M. Su! arez-Tembra, Dyslipidaemia Registry of the Spanish Atherosclerosis Society, LDL cholesterol reduction variability with different types and doses of statins in monotherapy or combined with ezetimibe. Results from the Spanish arteriosclerosis society dyslipidaemia registry, Cardiovasc. Drugs Ther. (2022) 1–8, https://doi.org/ 10.1007/s10557-020-07137-z | |
| dc.relation.references | T. Liu, D. Zhao, Y. Qi, Global Trends in the Epidemiology and Management of Dyslipidemia, 2022, https://doi.org/10.3390/jcm11216377. | |
| dc.relation.references | A. Attar, Response to statin therapy in the real world, Eur. J. Prev. Cardiol. 28 (14) (2021) e25–e26, https://doi.org/10.1177/2047487320905718. | |
| dc.relation.references | D.D. Bacquer, D.D. Smedt, Z. $ Reiner, L. Tokgozo % glu, & E. Clays, K. Kotseva, G. D. Backer, Percentage low-density lipoprotein-cholesterol response to a given statin dose is not fixed across the pre-treatment range: real world evidence from clinical practice: data from the ESC-EORP EUROASPIRE V Study, Eur. J. Prev. Cardiol. 27 (15) (2020) 1630–1636, https://doi.org/10.1177/ 204748731987489 | |
| dc.rights | © 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | |
| dc.subject.lemb | Factores de riesgo cardiovascular | |
| dc.subject.lemb | Inteligencia artificial en salud | |
| dc.subject.lemb | Aprendizaje automático | |
| dc.subject.lemb | Modelos predictivos clínicos | |
| dc.subject.lemb | Cardiovascular risk factors | |
| dc.subject.lemb | Artificial intelligence in health | |
| dc.subject.lemb | Machine learning | |
| dc.subject.lemb | Clinical predictive models | |
| dc.subject.ocde | 3. Ciencias Médicas y de la Salud::3C. Ciencias de la Salud::3C10. Salud ocupacional | |
| dc.subject.ocde | 3. Ciencias Médicas y de la Salud::3C. Ciencias de la Salud::3C04. Nutrición y dietas | |
| dc.subject.ocde | 1. Ciencias Naturales::1B. Computación y ciencias de la información::1B02. Ciencias de la información y bioinformática (hardware en 2.B y aspectos sociales en 5.8) | |
| dc.subject.ods | ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades | |
| dc.subject.proposal | Machine learning | |
| dc.subject.proposal | LDL cholesterol | |
| dc.subject.proposal | Hypolipidemic agents | |
| dc.subject.proposal | Risk factors | |
| dc.title | Optimizing treatment to control LDL cholesterol using machine learning | |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 996a607a-3eb1-4484-8978-ed736b9fc0b7 | |
| relation.isAuthorOfPublication.latestForDiscovery | 996a607a-3eb1-4484-8978-ed736b9fc0b7 |