Publicación:
PARSEC: an adaptive and efficient platform for reducing cold start in serverless computing

dc.contributor.authorBuitrago, Nicolás
dc.contributor.authorCamacho, Hector
dc.contributor.authorJimeno, Miguel
dc.contributor.authorViloria Núñez, Cesar Augusto
dc.contributor.authorCardona, Jairo
dc.contributor.authorSalazar, Augusto
dc.contributor.researchgroupGrupo de Investigación Tecnologías Aplicadas y Sistemas de Información (GRITAS)
dc.date.accessioned2025-12-10T18:19:52Z
dc.date.issued2021-08-08
dc.descriptionContiene ilustraciones, gráficos
dc.description.abstractServerless computing has revolutionized application development but faces a significant challenge: cold starts, which introduce delays when a function is called after a period of inactivity. Addressing these delays is crucial because they affect efficiency, performance, cost, and scalability. Existing mitigation strategies come with trade-offs, such as increased resource overhead and the need for precise resource management predictions. Also, optimizing the function startup process requires detailed knowledge of the runtime characteristics and the isolation technique used, such as using a container-based or a micro virtual machine setup. This work presents PARSEC, a comprehensive solution for cold start issues in serverless computing. By focusing on reducing initialization latency in idle containers, this research seeks to preserve scalability and ease of deployment features of serverless computing while overcoming cold start limitations. The proposed architecture improved cold start by streamlining the initialization of containers to reduce overhead. This involves minimizing unnecessary operations and customizing launches for serverless needs, aiming for a faster and more efficient setup. It also enhances the provisioning of Zygotes to speed up sandbox launches. The results show better performance for PARSEC when compared with other architectures, particularly at shorter wait times, suggesting effective cold start management. The strategic management of Zygotes and their provisioning scaling plays a critical role in managing large numbers of packages and instances, thereby enhancing the performance of package management. The cache system also evolves to become more selective, reducing overhead by focusing on essential packages
dc.format.extent14
dc.format.mimetypeapplication/pdf
dc.identifier.citationN. Buitrago et al., "PARSEC: an Adaptive and Efficient Platform for Reducing Cold Start in Serverless Computing" in IEEE Transactions on Services Computing, vol. , no. 01, pp. 1-14, PrePrints 5555, doi: 10.1109/TSC.2025.3627934.
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14289
dc.language.isoeng
dc.publisherIEEE Transactions on Services Computing
dc.relation.referencesE. Ahumada-Tello and R. Evans, “Survey on serverless computing,” Journal of Cloud Computing, vol. 10, no. 1, p. 39.
dc.relation.referencesE. Ahumada-Tello and R. Evans, “A complexity-based framework for social product development,” Procedia CIRP, vol. 119, pp. 1204–1209, 2023.
dc.relation.referencesS. G. Kulkarni, G. Liu, K. K. Ramakrishnan, and T. Wood, “Living on the edge: Serverless computing and the cost of failure resiliency,” in 2019 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), pp. 1–6. ISSN: 1944-0375
dc.relation.referencesH. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: A survey of opportunities, challenges, and applications,” ACM Computing Surveys, vol. 54, no. 11, pp. 239:1–239:32
dc.relation.referencesP. Sanmartin, K. Avila, S. Valle, J. Gomez, and D. Jabba, “Sbr: A novel architecture of software defined network using the rpl protocol for internet of things,” IEEE Access, vol. 9, pp. 119977–119986, 2021
dc.relation.referencesS. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. L. Abad, and A. Iosup, “Serverless applications: Why, when, and how?,” IEEE Software, vol. 38, no. 1, pp. 32–39. Conference Name: IEEE Software
dc.relation.referencesD. Bardsley, L. Ryan, and J. Howard, “Serverless performance and optimization strategies,” in 2018 IEEE International Conference on Smart Cloud (SmartCloud), pp. 19–26
dc.relation.referencesL. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind the curtains of serverless platforms,” pp. 133–146
dc.relation.referencesP. Silva, D. Fireman, and T. E. Pereira, “Prebaking functions to warm the serverless cold start,” in Proceedings of the 21st International Middleware Conference, Middleware ’20, pp. 1–13, Association for Computing Machinery
dc.relation.referencesK. Suo, J. Son, D. Cheng, W. Chen, and S. Baidya, “Tackling cold start of serverless applications by efficient and adaptive container runtime reusing,” in 2021 IEEE International Conference on Cluster Computing (CLUSTER), pp. 433–443. ISSN: 2168-9253
dc.relation.referencesF. Romero, G. I. Chaudhry, Goiri, P. Gopa, P. Batum, N. J. Yadwadkar, R. Fonseca, C. Kozyrakis, and R. Bianchini, “Faa$t: A transparent autoscaling cache for serverless applications,” in Proceedings of the ACM Symposium on Cloud Computing, SoCC ’21, pp. 122–137, Association for Computing Machinery
dc.relation.referencesA. Fuerst and P. Sharma, “FaasCache: keeping serverless computing alive with greedy-dual caching,” in Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’21, pp. 386–400, Association for Computing Machinery.
dc.relation.referencesE. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. ArpaciDusseau, and R. Arpaci-Dusseau, “SOCK: Rapid task provisioning with serverless-optimized containers,” pp. 57–70.
dc.relation.referencesD. Bermbach, A.-S. Karakaya, and S. Buchholz, “Using application knowledge to reduce cold starts in FaaS services,” in Proceedings of the 35th Annual ACM Symposium on Applied Computing, SAC ’20, pp. 134–143, Association for Computing Machinery
dc.relation.referencesP. Vahidinia, B. Farahani, and F. S. Aliee, “Mitigating cold start problem in serverless computing: A reinforcement learning approach,” IEEE Internet of Things Journal, pp. 1–1. Conference Name: IEEE Internet of Things Journal.
dc.relation.referencesM. Steinbach, A. Jindal, M. Chadha, M. Gerndt, and S. Benedict, “TppFaaS: Modeling serverless functions invocations via temporal point processes,” IEEE Access, vol. 10, pp. 9059–9084. Conference Name: IEEE Access
dc.relation.referencesI. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt, “SAND: Towards high-performance serverless computing,” pp. 923–935.
dc.relation.referencesK. Mahajan, S. Mahajan, V. Misra, and D. Rubenstein, “Exploiting content similarity to address cold start in container deployments,” in Proceedings of the 15th International Conference on emerging Networking EXperiments and Technologies, CoNEXT ’19 Companion, pp. 37–39, Association for Computing Machinery
dc.relation.referencesZ. Li, L. Guo, Q. Chen, J. Cheng, C. Xu, D. Zeng, Z. Song, T. Ma, Y. Yang, C. Li, and M. Guo, “Help rather than recycle: Alleviating cold startup in serverless computing through inter-function container sharing,” in 2022 USENIX Annual Technical Conference (USENIX ATC 22), pp. 69–84, USENIX Association
dc.relation.referencesZ. Li, Q. Chen, and M. Guo, “Pagurus: Eliminating Cold Startup in Serverless Computing with Inter-Action Container Sharing,” Aug. 2021. arXiv:2108.11240 [cs].
dc.relation.referencesA. Nayak, S. Ramaswamy, H. Kasture, D. Narayanan, and M. Sivathanu, “Flashcube: Fast provisioning of serverless functions with streamlined container runtimes,” in Proceedings of the 2022 USENIX Annual Technical Conference (USENIX ATC), pp. 135–149, 2022.
dc.relation.referencesC. Yu, J. Kang, J. Yoon, and B.-G. Lee, “Rainbowcake: Mitigating coldstarts in serverless with layer-wise container caching and sharing,” in Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2024.
dc.relation.referencesZ. Wang, Q. Lin, Y. Zhang, et al., “Asyfunc: A high-performance and resource-efficient serverless inference system via asymmetric functions,” in Proceedings of the ACM Symposium on Cloud Computing (SoCC), 2023.
dc.relation.referencesX. Xie, X. Ding, Z. Yang, et al., “Pre-warming is not enough: Accelerating serverless inference with opportunistic pre-loading,” in Proceedings of the ACM Symposium on Cloud Computing (SoCC), 2024
dc.relation.referencesW. Shen, C. Wang, Y. Zhang, et al., “Catalyzer: Sub-millisecond startup for serverless computing with initialization-less booting,” in Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2020
dc.relation.referencesJ. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold start influencing factors in function as a service,” in 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), pp. 181–188.
dc.relation.referencesP.-M. Lin and A. Glikson, “Mitigating cold starts in serverless platforms: A pool-based approach.”
dc.relation.referencesY.-H. Chiang, C. Zhu, H. Lin, and Y. Ji, “Hysteretic optimality of container warming control in serverless computing systems,” IEEE Networking Letters, vol. 3, no. 3, pp. 138–141. Conference Name: IEEE Networking Letters
dc.relation.referencesE. Hunhoff, S. Irshad, V. Thurimella, A. Tariq, and E. Rozner, “Proactive serverless function resource management,” in Proceedings of the 2020 Sixth International Workshop on Serverless Computing, WoSC’20, pp. 61–66, Association for Computing Machinery
dc.relation.referencesR. B. Roy, T. Patel, and D. Tiwari, “IceBreaker: warming serverless functions better with heterogeneity,” in Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’22, pp. 753–767, Association for Computing Machinery.
dc.relation.referencesS. Agarwal, M. A. Rodriguez, and R. Buyya, “A reinforcement learning approach to reduce serverless function cold start frequency,” in 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 797–803.
dc.relation.referencesA. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization for serverless applications,” pp. 419–434.
dc.relation.referencesS. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful serverless computing,” pp. 419–433
dc.relation.references“Overview of memory management | app quality.”
dc.relation.referencesS. Qin, H. Wu, Y. Wu, B. Yan, Y. Xu, and W. Zhang, “Nuka: A generic engine with millisecond initialization for serverless computing,” in 2020 IEEE International Conference on Joint Cloud Computing, pp. 78–85
dc.relation.referencesZ. Xu, H. Zhang, X. Geng, Q. Wu, and H. Ma, “Adaptive function launching acceleration in serverless computing platforms,” in 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), pp. 9–16. ISSN: 1521-9097.
dc.relation.referencesK. Solaiman and M. A. Adnan, “WLEC: A not so cold architecture to mitigate cold start problem in serverless computing,” in 2020 IEEE International Conference on Cloud Engineering (IC2E), pp. 144–153.
dc.relation.referencesA. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay, and A. Gandhi, “ENSURE: Efficient scheduling and autonomous resource management in serverless environments,” in 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), pp. 1–10.
dc.relation.referencesS. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation with OpenLambda,”
dc.relation.referencesS. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation with OpenLambda,” in 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16), (Denver, CO), USENIX Association, June 2016.
dc.relation.references“cgroups - linux manual page.
dc.relation.referencesM. Shahrad, R. Fonseca, Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless in the wild: Characterizing and optimizing the serverless workload at a large cloud provider,” pp. 205–218.
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.subject.lembCloud computing
dc.subject.lembDistributed computing
dc.subject.lembSoftware architecture
dc.subject.lembComputación en la nube
dc.subject.lembArquitectura de computadores
dc.subject.ocde1. Ciencias Naturales::1B. Computación y ciencias de la información::1B01. Ciencias de la computación
dc.subject.odsODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
dc.subject.proposalContainers
dc.subject.proposalRuntime
dc.subject.proposalServerless Computing,
dc.subject.proposalDelays
dc.subject.proposalScalability
dc.subject.proposalCosts
dc.subject.proposalLoading
dc.subject.proposalComplexity Theory
dc.subject.proposalPrevention And Mitigation
dc.subject.proposalLoad Modeling
dc.subject.proposalArticle Submission
dc.subject.proposalIEEE
dc.subject.proposalIEE Etran
dc.subject.proposalJournal
dc.subject.proposalLATEX
dc.subject.proposalPaper
dc.subject.proposalTemplate
dc.subject.proposalTypesetting
dc.subject.proposalScalable
dc.subject.proposalProvisioning
dc.subject.proposalCold Start
dc.subject.proposalResponse Time
dc.subject.proposalTree Structure
dc.subject.proposalC Group
dc.subject.proposalWaiting Time
dc.subject.proposalOpen Platform
dc.subject.proposalSecurity Risks
dc.subject.proposalAndroid Application
dc.subject.proposalVirtual Machines,
dc.subject.proposalFile System
dc.subject.proposalKept Alive
dc.subject.proposalAverage Response Time
dc.subject.proposalStatus Code
dc.subject.proposalError Handling
dc.subject.proposalResource Contention
dc.subject.proposalEssential Package
dc.subject.proposalPackage Manager
dc.titlePARSEC: an adaptive and efficient platform for reducing cold start in serverless computingeng
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationef7ccd85-aebf-4b7b-abb0-662939e5bd77
relation.isAuthorOfPublication.latestForDiscoveryef7ccd85-aebf-4b7b-abb0-662939e5bd77

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PARSEC_an_Adaptive_and_Efficient_Platform_for_Reducing_Cold_Start_in_Serverless_Computing.pdf
Tamaño:
2.82 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: