Publicación: PARSEC: an adaptive and efficient platform for reducing cold start in serverless computing
| dc.contributor.author | Buitrago, Nicolás | |
| dc.contributor.author | Camacho, Hector | |
| dc.contributor.author | Jimeno, Miguel | |
| dc.contributor.author | Viloria Núñez, Cesar Augusto | |
| dc.contributor.author | Cardona, Jairo | |
| dc.contributor.author | Salazar, Augusto | |
| dc.contributor.researchgroup | Grupo de Investigación Tecnologías Aplicadas y Sistemas de Información (GRITAS) | |
| dc.date.accessioned | 2025-12-10T18:19:52Z | |
| dc.date.issued | 2021-08-08 | |
| dc.description | Contiene ilustraciones, gráficos | |
| dc.description.abstract | Serverless computing has revolutionized application development but faces a significant challenge: cold starts, which introduce delays when a function is called after a period of inactivity. Addressing these delays is crucial because they affect efficiency, performance, cost, and scalability. Existing mitigation strategies come with trade-offs, such as increased resource overhead and the need for precise resource management predictions. Also, optimizing the function startup process requires detailed knowledge of the runtime characteristics and the isolation technique used, such as using a container-based or a micro virtual machine setup. This work presents PARSEC, a comprehensive solution for cold start issues in serverless computing. By focusing on reducing initialization latency in idle containers, this research seeks to preserve scalability and ease of deployment features of serverless computing while overcoming cold start limitations. The proposed architecture improved cold start by streamlining the initialization of containers to reduce overhead. This involves minimizing unnecessary operations and customizing launches for serverless needs, aiming for a faster and more efficient setup. It also enhances the provisioning of Zygotes to speed up sandbox launches. The results show better performance for PARSEC when compared with other architectures, particularly at shorter wait times, suggesting effective cold start management. The strategic management of Zygotes and their provisioning scaling plays a critical role in managing large numbers of packages and instances, thereby enhancing the performance of package management. The cache system also evolves to become more selective, reducing overhead by focusing on essential packages | |
| dc.format.extent | 14 | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | N. Buitrago et al., "PARSEC: an Adaptive and Efficient Platform for Reducing Cold Start in Serverless Computing" in IEEE Transactions on Services Computing, vol. , no. 01, pp. 1-14, PrePrints 5555, doi: 10.1109/TSC.2025.3627934. | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/14289 | |
| dc.language.iso | eng | |
| dc.publisher | IEEE Transactions on Services Computing | |
| dc.relation.references | E. Ahumada-Tello and R. Evans, “Survey on serverless computing,” Journal of Cloud Computing, vol. 10, no. 1, p. 39. | |
| dc.relation.references | E. Ahumada-Tello and R. Evans, “A complexity-based framework for social product development,” Procedia CIRP, vol. 119, pp. 1204–1209, 2023. | |
| dc.relation.references | S. G. Kulkarni, G. Liu, K. K. Ramakrishnan, and T. Wood, “Living on the edge: Serverless computing and the cost of failure resiliency,” in 2019 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), pp. 1–6. ISSN: 1944-0375 | |
| dc.relation.references | H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: A survey of opportunities, challenges, and applications,” ACM Computing Surveys, vol. 54, no. 11, pp. 239:1–239:32 | |
| dc.relation.references | P. Sanmartin, K. Avila, S. Valle, J. Gomez, and D. Jabba, “Sbr: A novel architecture of software defined network using the rpl protocol for internet of things,” IEEE Access, vol. 9, pp. 119977–119986, 2021 | |
| dc.relation.references | S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. L. Abad, and A. Iosup, “Serverless applications: Why, when, and how?,” IEEE Software, vol. 38, no. 1, pp. 32–39. Conference Name: IEEE Software | |
| dc.relation.references | D. Bardsley, L. Ryan, and J. Howard, “Serverless performance and optimization strategies,” in 2018 IEEE International Conference on Smart Cloud (SmartCloud), pp. 19–26 | |
| dc.relation.references | L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind the curtains of serverless platforms,” pp. 133–146 | |
| dc.relation.references | P. Silva, D. Fireman, and T. E. Pereira, “Prebaking functions to warm the serverless cold start,” in Proceedings of the 21st International Middleware Conference, Middleware ’20, pp. 1–13, Association for Computing Machinery | |
| dc.relation.references | K. Suo, J. Son, D. Cheng, W. Chen, and S. Baidya, “Tackling cold start of serverless applications by efficient and adaptive container runtime reusing,” in 2021 IEEE International Conference on Cluster Computing (CLUSTER), pp. 433–443. ISSN: 2168-9253 | |
| dc.relation.references | F. Romero, G. I. Chaudhry, Goiri, P. Gopa, P. Batum, N. J. Yadwadkar, R. Fonseca, C. Kozyrakis, and R. Bianchini, “Faa$t: A transparent autoscaling cache for serverless applications,” in Proceedings of the ACM Symposium on Cloud Computing, SoCC ’21, pp. 122–137, Association for Computing Machinery | |
| dc.relation.references | A. Fuerst and P. Sharma, “FaasCache: keeping serverless computing alive with greedy-dual caching,” in Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’21, pp. 386–400, Association for Computing Machinery. | |
| dc.relation.references | E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. ArpaciDusseau, and R. Arpaci-Dusseau, “SOCK: Rapid task provisioning with serverless-optimized containers,” pp. 57–70. | |
| dc.relation.references | D. Bermbach, A.-S. Karakaya, and S. Buchholz, “Using application knowledge to reduce cold starts in FaaS services,” in Proceedings of the 35th Annual ACM Symposium on Applied Computing, SAC ’20, pp. 134–143, Association for Computing Machinery | |
| dc.relation.references | P. Vahidinia, B. Farahani, and F. S. Aliee, “Mitigating cold start problem in serverless computing: A reinforcement learning approach,” IEEE Internet of Things Journal, pp. 1–1. Conference Name: IEEE Internet of Things Journal. | |
| dc.relation.references | M. Steinbach, A. Jindal, M. Chadha, M. Gerndt, and S. Benedict, “TppFaaS: Modeling serverless functions invocations via temporal point processes,” IEEE Access, vol. 10, pp. 9059–9084. Conference Name: IEEE Access | |
| dc.relation.references | I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt, “SAND: Towards high-performance serverless computing,” pp. 923–935. | |
| dc.relation.references | K. Mahajan, S. Mahajan, V. Misra, and D. Rubenstein, “Exploiting content similarity to address cold start in container deployments,” in Proceedings of the 15th International Conference on emerging Networking EXperiments and Technologies, CoNEXT ’19 Companion, pp. 37–39, Association for Computing Machinery | |
| dc.relation.references | Z. Li, L. Guo, Q. Chen, J. Cheng, C. Xu, D. Zeng, Z. Song, T. Ma, Y. Yang, C. Li, and M. Guo, “Help rather than recycle: Alleviating cold startup in serverless computing through inter-function container sharing,” in 2022 USENIX Annual Technical Conference (USENIX ATC 22), pp. 69–84, USENIX Association | |
| dc.relation.references | Z. Li, Q. Chen, and M. Guo, “Pagurus: Eliminating Cold Startup in Serverless Computing with Inter-Action Container Sharing,” Aug. 2021. arXiv:2108.11240 [cs]. | |
| dc.relation.references | A. Nayak, S. Ramaswamy, H. Kasture, D. Narayanan, and M. Sivathanu, “Flashcube: Fast provisioning of serverless functions with streamlined container runtimes,” in Proceedings of the 2022 USENIX Annual Technical Conference (USENIX ATC), pp. 135–149, 2022. | |
| dc.relation.references | C. Yu, J. Kang, J. Yoon, and B.-G. Lee, “Rainbowcake: Mitigating coldstarts in serverless with layer-wise container caching and sharing,” in Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2024. | |
| dc.relation.references | Z. Wang, Q. Lin, Y. Zhang, et al., “Asyfunc: A high-performance and resource-efficient serverless inference system via asymmetric functions,” in Proceedings of the ACM Symposium on Cloud Computing (SoCC), 2023. | |
| dc.relation.references | X. Xie, X. Ding, Z. Yang, et al., “Pre-warming is not enough: Accelerating serverless inference with opportunistic pre-loading,” in Proceedings of the ACM Symposium on Cloud Computing (SoCC), 2024 | |
| dc.relation.references | W. Shen, C. Wang, Y. Zhang, et al., “Catalyzer: Sub-millisecond startup for serverless computing with initialization-less booting,” in Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2020 | |
| dc.relation.references | J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold start influencing factors in function as a service,” in 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), pp. 181–188. | |
| dc.relation.references | P.-M. Lin and A. Glikson, “Mitigating cold starts in serverless platforms: A pool-based approach.” | |
| dc.relation.references | Y.-H. Chiang, C. Zhu, H. Lin, and Y. Ji, “Hysteretic optimality of container warming control in serverless computing systems,” IEEE Networking Letters, vol. 3, no. 3, pp. 138–141. Conference Name: IEEE Networking Letters | |
| dc.relation.references | E. Hunhoff, S. Irshad, V. Thurimella, A. Tariq, and E. Rozner, “Proactive serverless function resource management,” in Proceedings of the 2020 Sixth International Workshop on Serverless Computing, WoSC’20, pp. 61–66, Association for Computing Machinery | |
| dc.relation.references | R. B. Roy, T. Patel, and D. Tiwari, “IceBreaker: warming serverless functions better with heterogeneity,” in Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’22, pp. 753–767, Association for Computing Machinery. | |
| dc.relation.references | S. Agarwal, M. A. Rodriguez, and R. Buyya, “A reinforcement learning approach to reduce serverless function cold start frequency,” in 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 797–803. | |
| dc.relation.references | A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization for serverless applications,” pp. 419–434. | |
| dc.relation.references | S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful serverless computing,” pp. 419–433 | |
| dc.relation.references | “Overview of memory management | app quality.” | |
| dc.relation.references | S. Qin, H. Wu, Y. Wu, B. Yan, Y. Xu, and W. Zhang, “Nuka: A generic engine with millisecond initialization for serverless computing,” in 2020 IEEE International Conference on Joint Cloud Computing, pp. 78–85 | |
| dc.relation.references | Z. Xu, H. Zhang, X. Geng, Q. Wu, and H. Ma, “Adaptive function launching acceleration in serverless computing platforms,” in 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), pp. 9–16. ISSN: 1521-9097. | |
| dc.relation.references | K. Solaiman and M. A. Adnan, “WLEC: A not so cold architecture to mitigate cold start problem in serverless computing,” in 2020 IEEE International Conference on Cloud Engineering (IC2E), pp. 144–153. | |
| dc.relation.references | A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay, and A. Gandhi, “ENSURE: Efficient scheduling and autonomous resource management in serverless environments,” in 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), pp. 1–10. | |
| dc.relation.references | S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation with OpenLambda,” | |
| dc.relation.references | S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation with OpenLambda,” in 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16), (Denver, CO), USENIX Association, June 2016. | |
| dc.relation.references | “cgroups - linux manual page. | |
| dc.relation.references | M. Shahrad, R. Fonseca, Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless in the wild: Characterizing and optimizing the serverless workload at a large cloud provider,” pp. 205–218. | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | |
| dc.subject.lemb | Cloud computing | |
| dc.subject.lemb | Distributed computing | |
| dc.subject.lemb | Software architecture | |
| dc.subject.lemb | Computación en la nube | |
| dc.subject.lemb | Arquitectura de computadores | |
| dc.subject.ocde | 1. Ciencias Naturales::1B. Computación y ciencias de la información::1B01. Ciencias de la computación | |
| dc.subject.ods | ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación | |
| dc.subject.proposal | Containers | |
| dc.subject.proposal | Runtime | |
| dc.subject.proposal | Serverless Computing, | |
| dc.subject.proposal | Delays | |
| dc.subject.proposal | Scalability | |
| dc.subject.proposal | Costs | |
| dc.subject.proposal | Loading | |
| dc.subject.proposal | Complexity Theory | |
| dc.subject.proposal | Prevention And Mitigation | |
| dc.subject.proposal | Load Modeling | |
| dc.subject.proposal | Article Submission | |
| dc.subject.proposal | IEEE | |
| dc.subject.proposal | IEE Etran | |
| dc.subject.proposal | Journal | |
| dc.subject.proposal | LATEX | |
| dc.subject.proposal | Paper | |
| dc.subject.proposal | Template | |
| dc.subject.proposal | Typesetting | |
| dc.subject.proposal | Scalable | |
| dc.subject.proposal | Provisioning | |
| dc.subject.proposal | Cold Start | |
| dc.subject.proposal | Response Time | |
| dc.subject.proposal | Tree Structure | |
| dc.subject.proposal | C Group | |
| dc.subject.proposal | Waiting Time | |
| dc.subject.proposal | Open Platform | |
| dc.subject.proposal | Security Risks | |
| dc.subject.proposal | Android Application | |
| dc.subject.proposal | Virtual Machines, | |
| dc.subject.proposal | File System | |
| dc.subject.proposal | Kept Alive | |
| dc.subject.proposal | Average Response Time | |
| dc.subject.proposal | Status Code | |
| dc.subject.proposal | Error Handling | |
| dc.subject.proposal | Resource Contention | |
| dc.subject.proposal | Essential Package | |
| dc.subject.proposal | Package Manager | |
| dc.title | PARSEC: an adaptive and efficient platform for reducing cold start in serverless computing | eng |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | ef7ccd85-aebf-4b7b-abb0-662939e5bd77 | |
| relation.isAuthorOfPublication.latestForDiscovery | ef7ccd85-aebf-4b7b-abb0-662939e5bd77 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- PARSEC_an_Adaptive_and_Efficient_Platform_for_Reducing_Cold_Start_in_Serverless_Computing.pdf
- Tamaño:
- 2.82 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.49 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: