Publicación: Relationship of airborne fungal spores to epidemiological data on respiratory disease: a systematic review
| dc.contributor.author | Jiménez‑Uribe, Dámaris A. | |
| dc.contributor.author | Acevedo Barrios, Rosa Leonor | |
| dc.contributor.author | Rubiano Labrador, Diana Carolina | |
| dc.contributor.author | Cariñanos, Paloma | |
| dc.contributor.researchgroup | Grupo de Investigación Estudios Químicos y Biológicos | |
| dc.contributor.seedbeds | Semillero de Investigación en Ciencias Ambientales | |
| dc.coverage.spatial | Comunidad cientifica y academica en general | |
| dc.date.accessioned | 2026-02-02T15:00:10Z | |
| dc.date.issued | 2026-01-20 | |
| dc.description | Contiene ilustraciones, gráficas, mapas. | |
| dc.description.abstract | Exposure to fungal spores is associated with various types of respiratory health problems, and volumetric suction particle samplers have been used to estimate their concentrations in the atmosphere. This systematic review analyzes the sampling of fungal spores in outdoor air worldwide and its relationship to epidemiological data on respiratory disease. Ninety-four studies were identified that met the following inclusion criteria: They were original studies published in English or Spanish between 2010 and 2024, used active volumetric impact samplers, and identified the type of fungal spores in air. Most of the studies were conducted in Europe, with a duration of 1 to 2 years. The fungal taxa with the highest records were Alternaria sp. and Cladosporium sp. Only 13% of the studies correlated fungal spore con centrations with epidemiological variables; however, Supplementary Information The online version contains supplementary material available at relationship between airborne fungal spore concentration and the occurrence of respiratory symptoms in the sensitized population. Therefore, this study provides an elaborate review of recent airborne fungal spore surveillance issues worldwide, attempting to include different perspectives of recent research on outdoor volumetric sampling, including epidemio logical analysis. | |
| dc.description.researcharea | Microbiología y toxicología ambiental | |
| dc.description.tableofcontents | 1 Introduction 2 Materials and methods 3 Results and discussion 4 Conclusion 5. References | |
| dc.description.technicalinfo | No Aplica | |
| dc.format.extent | 20 paginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Jiménez-Uribe, D.A., Acevedo-Barrios, R., Rubiano-Labrador, C. et al. Relationship of airborne fungal spores to epidemiological data on respiratory disease: a systematic review. Aerobiologia 42, 11 (2026). https://doi.org/10.1007/s10453-025-09890-w | |
| dc.identifier.other | https://doi.org/10.1007/s10453-025-09890-w | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/14309 | |
| dc.language.iso | eng | |
| dc.publisher | Aerobiologia | |
| dc.relation.references | Abbas, S., Katelaris, C. H., Singh, A. B., Raza, S. M., Khan, M. A., Rashid, M., Abbas, M., & Ismail, M. (2012). World Allergy Organization study on aerobiology for creating first pollen and mold calendar with clinical significance in Islamabad, Pakistan; A project of World Allergy Organization and Pakistan Allergy, Asthma & Clinical Immunology Centre of Islamabad. WorldAllergy Organization Journal, 5(9), Article 9. https:// doi. org/ 10. 1097/ WOX. 0b013 e3182 6421c8 | |
| dc.relation.references | Abu-Dieyeh, M. H., & Barham, R. (2014). Concentrations and dynamics of fungal spore populations in the air of Zarqa, Jordan, using the volumetric method. Grana, 53(2), Arti cle 2. https:// doi. org/ 10. 1080/ 00173 134. 2014. 896413 | |
| dc.relation.references | Aira, M.-J., Rodríguez-Rajo, F.-J., Fernández-González, M., Seijo, C., Elvira-Rendueles, B., Abreu, I., Gutiérrez Bustillo, M., Pérez-Sánchez, E., Oliveira, M., Recio, M., Tormo, R., & Morales, J. (2013). Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993 2009. International Journal of Biometeorology, 57(2), Article 2. https:// doi. org/ 10. 1007/ s00484- 012- 0550-x | |
| dc.relation.references | Akgül, H., Yılmazkaya, D., Akata, I., Tosunoğlu, A., & Bıçakçı, A. (2016). Determination of airborne fungal spores of Gaziantep (SE Turkey). Aerobiologia, 32(3), Article 3. https:// doi. org/ 10. 1007/ s10453- 015- 9417-z | |
| dc.relation.references | Al-Ahmad, M., Jusufovic, E., Arifhodzic, N., Rodriguez, T., & Nurkic, J. (2019). Association of molds and metrological parameters to frequency of severe asthma exacerbation. Allergy, Asthma & Clinical Immunology, 15(1), Article 1. https:// doi. org/ 10. 1186/ s13223- 019- 0323-8 | |
| dc.relation.references | Almaguer, M., Rojas-Flores, T. I., Rodríguez-Rajo, F. J., & Aira, M.-J. (2014). Airborne basidiospores of Copri nus and Ganoderma in a Caribbean region. Aero biologia, 30(2), 197–204. https:// doi. org/ 10. 1007/ s10453- 013- 9318-y | |
| dc.relation.references | Almaguer-Chávez, M., Aira, M., Rojas, T.-I., Fernández González, M., & Rodríguez-Rajo, F.-J. (2018). New f indings of airborne fungal spores in the atmosphere of Havana, Cuba, using aerobiological non-viable methodol ogy. Annals of Agricultural and Environmental Medicine, 25(2), Article 2. https:// doi. org/ 10. 26444/ aaem/ 89738 | |
| dc.relation.references | Al-Nesf, M. A., Gharbi, D., Mobayed, H. M., Mohammed Ali, R., Dason, B. R., Adeli, M., Tuffaha, A., Sattar, H. A., & Trigo, MdelM. (2022). The correlation between middle schoolchildren allergic symptoms and airborne particle season: A cross-sectional study. Medicine, 101(17), Arti cle 17. https:// doi. org/ 10. 1097/ MD. 00000 00000 029210 | |
| dc.relation.references | Amado, M. C., Portnoy, J. M., & Barnes, C. (2014). Fungal cross-allergenicity in specific Ige testing. Journal of Allergy and Clinical Immunology, 133(2, Supplement), Article AB92. https:// doi. org/ 10. 1016/j. jaci. 2013. 12. 344 | |
| dc.relation.references | Anees-Hill, S., Douglas, P., Pashley, C. H., Hansell, A., & Marczylo, E. L. (2021). A systematic review of outdoor airborne fungal spore seasonality across Europe and the implications for health. Science of The Total Environ ment, 151716. https:// doi. org/ 10. 1016/j. scito tenv. 2021. 151716 | |
| dc.relation.references | Antón, S. F., de la Cruz, D. R., Sánchez, J. S., & Sánchez Reyes, E. (2019). Analysis of the airborne fungal spores present in the atmosphere of Salamanca (MW Spain): A preliminary survey. Aerobiologia, 35(3), Article 3. https:// doi. org/ 10. 1007/ s10453- 019- 09569-z | |
| dc.relation.references | Arbes, S. J., Gergen, P. J., Elliott, L., & Zeldin, D. C. (2005). Prevalences of positive skin test responses to 10 common allergens in the US population: Results from the Third National Health and Nutrition Examination Survey. Jour nal of Allergy and Clinical Immunology, 116(2), 377 383. https:// doi. org/ 10. 1016/j. jaci. 2005. 05. 017 | |
| dc.relation.references | Bardei, F., Bouziane, H., Trigo, MdelM., Ajouray, N., El Haskouri, F., & Kadiri, M. (2017). Atmospheric concen trations and intradiurnal pattern of Alternaria and Cla dosporium conidia in Tétouan (NW of Morocco). Aero biologia. https:// doi. org/ 10. 1007/ s10453- 016- 9465-z | |
| dc.relation.references | Batra, M., Vicendese, D., Newbigin, E., Lambert, Ka., Tang, M., Abramson, M. J., Dharmage, S. C., & Erbas, B. (2022). The association between outdoor allergens – pol len, fungal spore season and high asthma admission days in children and adolescents. International Journal of Environmental Health Research. https:// doi. org/ 10. 1080/ 09603 123. 2021. 18856 33 | |
| dc.relation.references | Baxi, S. N., Sheehan, W. J., Sordillo, J. E., Muilenberg, M. L., Rogers, C. A., Gaffin, J. M., Permaul, P., Lai, P. S., Loui sias, M., Petty, C. R., Fu, C., Gold, D. R., & Phipatan akul, W. (2019). Association between fungal spore expo sure in inner-city schools and asthma morbidity. Annals of Allergy, Asthma & Immunology, 122(6), 610-615.e1. https:// doi. org/ 10. 1016/j. anai. 2019. 03. 011 | |
| dc.relation.references | Becher, R., Hongslo, J. K., & Dybing, E. (2000). Guidelines for indoor air in Norway - a practical approach. Pollu tion Atmosphérique Climat Santé Société, 166, 245–246. https:// doi. org/ 10. 4267/ pollu tion- atmos pheri que. 3772 | |
| dc.relation.references | Bertolini, V., Gandolfi, I., Ambrosini, R., Bestetti, G., Inno cente, E., Rampazzo, G., & Franzetti, A. (2013). Tem poral variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Applied Microbiology and Biotech nology, 97(14), 6561–6570. https:// doi. org/ 10. 1007/ s00253- 012- 4450-0 | |
| dc.relation.references | Bisen, P. S., Debnath, M., & Prasad, G. B. (2012). Microbes: Concepts and Applications. John Wiley & Sons. | |
| dc.relation.references | Bisht, V., Singh, B. P., Arora, N., Gaur, S. N., & Sridhara, S. (2002). Antigenic and allergenic cross-reactivity of Epicoccum nigrum with other fungi. Annals of Allergy, Asthma & Immunology, 89(3), 285–291. https:// doi. org/ 10. 1016/ S1081- 1206(10) 61956-4 | |
| dc.relation.references | Blais-Lecours, P., Perrott, P., & Duchaine, C. (2015). Non-cul turable bioaerosols in indoor settings: Impact on health and molecular approaches for detection. Atmospheric Environment, 110, 45–53. https:// doi. org/ 10. 1016/j. atmos env. 2015. 03. 039 | |
| dc.relation.references | Caillaud, D., Keirsbulck, M., Leger, C., Leynaert, B., Outdoor Mould ANSES Working Group. (2022). Outdoor mold and respiratory health: State of science of epidemiologi cal studies. The Journal of Allergy and Clinical Immu nology. In Practice, 10(3), 768-784.e3. https:// doi. org/ 10. 1016/j. jaip. 2021. 09. 042 | |
| dc.relation.references | Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., Jiang, J., & Zhu, T. F. (2014). Inhalable microorganisms in Bei jing’s PM2.5 and PM10 pollutants during a severe smog event. Environmental Science & Technology. https:// doi. org/ 10. 1021/ es404 8472 | |
| dc.relation.references | Carlile, M. J., Watkinson, S. C., & Gooday, G. W. (2001). The Fungi. Gulf Professional Publishing. | |
| dc.relation.references | Castro, C. (2009). Evaluación aeromicológica en la calidad del aire de la zona aledaña al relleno sanitario Portillo Grande en el otoño del 2009. UNALM. | |
| dc.relation.references | Cecchi, L., D’Amato, G., Ayres, J. G., Galan, C., Forastiere, F., Forsberg, B., Gerritsen, J., Nunes, C., Behrendt, H., Akdis, C., Dahl, R., & Annesi-Maesano, I. (2010). Projections of the effects of climate change on allergic asthma: The contribution of aerobiology. Allergy, 65(9), 1073–1081. https:// doi. org/ 10. 1111/j. 1398- 9995. 2010. 02423.x | |
| dc.relation.references | Cervantes-De La Torre, K., Guillen-Grima, F., Aguinaga Ontoso, I., & Mendoza-Mendoza, A. (2018). Presencia de alergias en menores por consumo temprano de ali mentos en Barranquilla, Colombia. Revista De Salud Pública, 20, 177–181. https:// doi. org/ 10. 15446/ rsap. v20n2. 62997 | |
| dc.relation.references | Chakrabarti, H. S., Das, S., & Gupta-Bhattacharya, S. (2012). Outdoor airborne fungal spora load in a suburb of Kol kata, India: Its variation, meteorological determinants and health impact. International Journal of Environmen tal Health Research. https:// doi. org/ 10. 1080/ 09603 123. 2011. 588323 | |
| dc.relation.references | Chakraborty, P., Chakraborty, A., Ghosh, D., Mandal, J., Bis was, S., Mukhopadhyay, U. K., & Gupta Bhattacharya, S. (2014). Effect of airborne Alternaria conidia, ozone exposure, PM10 and weather on emergency visits for asthma in school-age children in Kolkata city, India. Aer obiologia. https:// doi. org/ 10. 1007/ s10453- 013- 9312-4 | |
| dc.relation.references | Chane-Si-Ken, N., Allou, N., Bénéteau, S., Verduyn, M., Gazaille, V., Raherison, C., & André, M. (2022). Asthma exacerbations in Reunion Island: Environmental factors. Respiratory Medicine and Research, 81, Article 100779. https:// doi. org/ 10. 1016/j. resmer. 2020. 100779 | |
| dc.relation.references | Charalampopoulos, A., Damialis, A., & Vokou, D. (2022). Spa tiotemporal assessment of aeromycoflora under differing urban green space, sampling height, and meteorological regimes: The atmospheric fungiscape of Thessaloniki, Greece. International Journal of Biometeorology. https:// doi. org/ 10. 1007/ s00484- 022- 02247-9 | |
| dc.relation.references | Chen, B.-Y., Chao, H. J., Chan, C.-C., Lee, C.-T., Wu, H.-P., Cheng, T.-J., Chen, C.-C., & Guo, Y. L. (2011). Effects of ambient particulate matter and fungal spores on lung function in schoolchildren. Pediatrics. https:// doi. org/ 10. 1542/ peds. 2010- 1038 | |
| dc.relation.references | Chew, F. T., Lim, S. H., Shang, H. S., Siti Dahlia, M. D., Goh, D. Y. T., Lee, B. W., Tan, H. T. W., & Tan, T. K. (2000). Evaluation of the allergenicity of tropical pollen and airborne spores in Singapore. Allergy, 55(4), 340–347. https:// doi. org/ 10. 1034/j. 1398- 9995. 2000. 00308.x | |
| dc.relation.references | Chi, M.-C., & Li, C.-S. (2007). Fluorochrome in monitoring atmospheric bioaerosols and correlations with meteoro logical factors and air pollutants. Aerosol Science and Technology, 41(7), 672–678. https:// doi. org/ 10. 1080/ 02786 82070 13831 81 | |
| dc.relation.references | Cid-Martínez, M. A., Gallardo-Velázquez, K., Rosique-Gil, J. E., Domínguez-Rodríguez, V. I., & Focil-Monterrubio, R. L. (2019). CUANTIFICACIÓN DE LAS ESPO RAS DE <EM>GANODERMA</EM> DEL AIRE EXTERIOR EN LA CIUDAD DE VILLAHERMOSA, TABASCO, MÉXICO. Revista Internacional de Con taminación Ambiental, 35(2), Article 2. https:// doi. org/ 10. 20937/ RICA. 2019. 35. 02. 20 | |
| dc.relation.references | Craig, R. L., & Levetin, E. (2000). Multi-year study of Gano derma aerobiology. Aerobiologia, 16(1), 75–81. https:// doi. org/ 10. 1023/A: 10076 82600 175 | |
| dc.relation.references | Cramer, R. A., Rivera, A., & Hohl, T. M. (2011). Immune responses against Aspergillus fumigatus: What have we learned? Current Opinion in Infectious Diseases, 24(4), 315–322. https:// doi. org/ 10. 1097/ QCO. 0b013 e3283 48b159 | |
| dc.relation.references | Damialis, A., Vokou, D., Gioulekas, D., & Halley, J. M. (2015). Long-term trends in airborne fungal-spore concentra tions: A comparison with pollen. Fungal Ecology, 13, 150–156. https:// doi. org/ 10. 1016/j. funeco. 2014. 09. 010 | |
| dc.relation.references | Das, S., & Gupta-Bhattacharya, S. (2012). Monitoring and assessment of airborne fungi in Kolkata, India, by via ble and non-viable air sampling methods. Environmen tal Monitoring and Assessment. https:// doi. org/ 10. 1007/ s10661- 011- 2294-1 | |
| dc.relation.references | de Aquino Neto, F. R., & de Góes Siqueira, L. F. (2000). Guidelines for indoor air quality in offices in Brazil. Pro ceedings of Healthy Buildings, 4, 549–554. | |
| dc.relation.references | de Ana, S. G., Rodríguez, J., & T.-, & Ramírez, E. A. (2006). Seasonal Distribution of Alt ernaria, Aspergillus, Clad osporium and Penicillium Species Isolated in Homes of Fungal Allergic Patients. J Investig Allergol Clin Immu nol, 16, 357. | |
| dc.relation.references | De Linares, C., Navarro, D., Puigdemunt, R., & Belmonte, J. (2023). Aspergillus conidia and allergens in outdoor environment: A health hazard? Journal of Fungi, 9(6), Article 6. https:// doi. org/ 10. 3390/ jof90 60624 | |
| dc.relation.references | Deacon, J. W. (2005). Fungal Biology. John Wiley & Sons. | |
| dc.relation.references | Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M. O., Pöschl, U., & Jaenicke, R. (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus b: Chemical and Physical Meteorology. https:// doi. org/ 10. 3402/ tellu sb. v64i0. 15598 | |
| dc.relation.references | Dey, D., Ghosal, K., & Bhattacharya, S. G. (2019). Aerial fun gal spectrum of Kolkata, India, along with their aller genic impact on the public health: A quantitative and qualitative evaluation. Aerobiologia. https:// doi. org/ 10. 1007/ s10453- 018- 9534-6 | |
| dc.relation.references | Díaz Vázquez, L., Almaguer Chávez, M., Fernández-González, M., & Sánchez Espinosa, K. C. (2024). New airborne fungal spores in the atmosphere of Havana, Cuba. Aero biologia. https:// doi. org/ 10. 1007/ s10453- 024- 09816-y | |
| dc.relation.references | Egan, C., Li, D.-W., & Klironomos, J. (2014). Detection of arbuscular mycorrhizal fungal spores in the air across different biomes and ecoregions. Fungal Ecology, 12, 26–31. https:// doi. org/ 10. 1016/j. funeco. 2014. 06. 004 | |
| dc.relation.references | Elbert, W., Taylor, PE., Andreae, MO., & Pöschl, U. (2007). Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores carbo hydrates and inorganic ions. Atmospheric Chemistry and Physics, 7(17), 4569–4588. https:// doi. org/ 10. 5194/ acp-7- 4569- 2007 | |
| dc.relation.references | Elvira-Rendueles, B., Moreno, J., Garcia-Sanchez, A., Vergara, N., Martinez-Garcia, M. J., & Moreno-Grau, S. (2013). Air-spore in Cartagena, Spain: Viable and non-viable sampling methods. Annals of Agricultural and Envi ronmental Medicine, 20(4). http:// agro. icm. edu. pl/ agro/ eleme nt/ bwmet a1. eleme nt. agro- ddea1 f11- b6ed- 4c18- 8c44- 0da5a fa5c7 8a | |
| dc.relation.references | Emygdio, A. P. M., Degobbi, C., Gonçalves, F. L. T., & Andrade, MdeF. (2018). One year of temporal charac terization of fungal spore concentration in São Paulometropolitan area, Brazil. Journal of Aerosol Science, 115, 121–132. https:// doi. org/ 10. 1016/j. jaero sci. 2017. 07. 003 | |
| dc.relation.references | Espinosa, K. C. S., Chávez, M. A., Ramírez, I. P., Flores, T. I. R., & Rodríguez, M. J. A. (2019). DIVERSIDAD FÚNGICA EN LA ATMÓSFERA DE LA HABANA (CUBA) DURANTE TRES PERÍODOS POCO LLUVI OSOS. Revista Internacional De Contaminación Ambi ental. https:// doi. org/ 10. 20937/ RICA. 2019. 35. 01. 10 | |
| dc.relation.references | Fernández-Rodríguez, S., Tormo-Molina, R., Maya-Man zano, J. M., Silva-Palacios, I., & Gonzalo-Garijo, Á. (2014). Outdoor airborne fungi captured by viable and non-viable methods. Fungal Ecology, 7, 16–26. https:// doi. org/ 10. 1016/j. funeco. 2013. 11. 004 | |
| dc.relation.references | Fernández-Rodríguez, S., Tormo-Molina, R., Lemonis, N., Clot, B., O’Connor, D. J., & Sodeau, J. R. (2018). Comparison of fungal spores concentrations measured with wideband integrated bioaerosol sensor and Hirst methodology. Atmospheric Environment, 175, 1–14. https:// doi. org/ 10. 1016/j. atmos env. 2017. 11. 038 | |
| dc.relation.references | Filali Ben Sidel, F., Bouziane, H., del Mar Trigo, M., El Haskouri, F., Bardei, F., Redouane, A., Kadiri, M., Riadi, H., & Kazzaz, M. (2015). Airborne fungal spores of Alternaria, meteorological parameters and predicting variables. International Journal of Biomete orology. https:// doi. org/ 10. 1007/ s00484- 014- 0845-1 | |
| dc.relation.references | Frankland, A. W., & Davies, R. R. (1965). Allergie aux spores de moisissures en Angleterre. Le Poumon Et Le Cœur, 21, 11–23. | |
| dc.relation.references | Gabriel, M. F., Postigo, I., Tomaz, C. T., & Martínez, J. (2016). Alternaria alternata allergens: Markers of exposure, phylogeny and risk of fungi-induced res piratory allergy. Environment International, 89, 71–80. https:// doi. org/ 10. 1016/j. envint. 2016. 01. 003 | |
| dc.relation.references | Galán, C., Cariñanos, P., Alcázar, P., & Domínguez, E. (2007). Manual de Calidad y Gestión de la Red Espa ñola de Aerobiología. Servicio De Publicaciones De La Universidad De CórdoBA. | |
| dc.relation.references | Gharbi, D., Mobayed, H. M., Ali, R. M., Tuffaha, A., Dason, B. R., Ibrahim, T., Adeli, M., Sattar, H. A., Trigo, MdelM., & Al-Nesf, M. A. (2022). First volumet ric records of airborne Cladosporium and Alternaria spores in the atmosphere of Al Khor (northern Qatar): A preliminary survey. Aerobiologia. https:// doi. org/ 10. 1007/ s10453- 022- 09746-7 | |
| dc.relation.references | Ghosh, B., Das, A., & Lal, H. (2022). Bioaerosol and Its Impact on Human Health. In S. Sonwani & A. Shukla (Eds.), Airborne Particulate Matter: Source, Chemistry and Health (pp. 167–193). Springer Nature. https:// doi. org/ 10. 1007/ 978- 981- 16- 5387-2_8 | |
| dc.relation.references | Goh, T.-K., Hyde, K. D., & Lee, D. K. L. (1998). Generic distinction in the Helminthosporium-complex based on restriction analysis of the nuclear ribosomal RNA gene. Fungal Diversity, 1, 85–107. | |
| dc.relation.references | Grinn-Gofroń, A. (2008). The variation in spore concentra tions of selected fungal taxa associated with weather conditions in Szczecin, Poland, 2004–2006. Grana, 47(2), 139–146. https:// doi. org/ 10. 1080/ 00173 13080 20913 85 | |
| dc.relation.references | Grinn-Gofroń, A., & Strzelczak, A. (2011). The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air. International Journal of Biometeor ology. https:// doi. org/ 10. 1007/ s00484- 010- 0329-x | |
| dc.relation.references | Grinn-Gofroń, A., Çeter, T., Pinar, N. M., Bosiacka, B., Çeter, S., Keçeli, T., Myśliwy, M., Şahin, A. A., & Bogawski, P. (2020). Airborne fungal spore load and season timing in the Central and Eastern Black Sea region of Turkey explained by climate conditions and land use. Agri cultural and Forest Meteorology, 295, Article 108191. https:// doi. org/ 10. 1016/j. agrfo rmet. 2020. 108191 | |
| dc.relation.references | Hasnain, S. M., Akhter, T., & Waqar, M. A. (2012). Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors. Journal of Environmental Monitoring. https:// doi. org/ 10. 1039/ C2EM1 0545D | |
| dc.relation.references | Hawksworth, D. L., & Lücking, R. (2017). Fungal diver sity revisited: 2.2 to 3.8 million species. Microbiol ogy Spectrum. https:// doi. org/ 10. 1128/ micro biols pec. funk- 0052- 2016 | |
| dc.relation.references | Hernández Trejo, F., Muñoz Rodríguez, A.F., Tormo Molina, R. et al. (2012). Airborne ascospores in Mérida (SW Spain) and the effect of rain and other meteorological parameters on their concentration. Aerobiologia, 28, 13–26. https:// doi. org/ 10. 1007/ s10453- 011- 9207-1 | |
| dc.relation.references | Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology. https:// doi. org/ 10. 1111/j. 1744- 7348. 1952. tb009 04.x | |
| dc.relation.references | Holmberg, K. (1987). Indoor mold exposure to health effects. Indoor Air: Volatile Organic Compounds, Combustion Gases, Particles and Fibers, Microbiological Agents., 1, 637–642. | |
| dc.relation.references | Hopke, A., Brown, A. J. P., Hall, R. A., & Wheeler, R. T. (2018). Dynamic fungal cell wall architecture in stress adaptation and immune evasion. Trends in Microbiology, 26(4), 284–295. https:// doi. org/ 10. 1016/j. tim. 2018. 01. 007 | |
| dc.relation.references | Huertas, M. E., Acevedo-Barrios, R. L., Rodríguez, M., Gaviria, J., Arana, R., & Arciniegas, C. (2018). Identi f ication and quantification of bioaerosols in a tropical coastal region: Cartagena de Indias, Colombia. Aero sol Science and Engineering. https:// doi. org/ 10. 1007/ s41810- 018- 0037-1 | |
| dc.relation.references | Ianovici, N. (2016). Atmospheric concentrations of selected allergenic fungal spores in relation to some meteoro logical factors, in Timişoara (Romania). Aerobiologia. https:// doi. org/ 10. 1007/ s10453- 016- 9427-5 | |
| dc.relation.references | Janssen, R. H. H., Heald, C. L., Steiner, A. L., Perring, A. E., Huffman, J. A., Robinson, E. S., Twohy, C. H., & Ziemba, L. D. (2021). Drivers of the fungal spore bio aerosol budget: Observational analysis and global mod eling. Atmospheric Chemistry and Physics, 21(6), 4381 4401. https:// doi. org/ 10. 5194/ acp- 21- 4381- 2021 | |
| dc.relation.references | Jo, W.-K., & Seo, Y.-J. (2005). Indoor and outdoor bioaerosol levels at recreation facilities, elementary schools, and homes. Chemosphere, 61(11), 1570–1579. https:// doi. org/ 10. 1016/j. chemo sphere. 2005. 04. 103 | |
| dc.relation.references | Kallawicha, K., Chen, Y.-C., Chao, H. J., Shen, W.-C., Chen, B.-Y., Chuan, Y.-C., & Guo, Y. L. (2017). Ambient fun gal spore concentration in a subtropical metropolis: Tem poral distributions and meteorological determinants. Aer osol and Air Quality Research. https:// doi. org/ 10. 4209/ aaqr. 2016. 10. 0450 | |
| dc.relation.references | Kasprzyk, I. (2008). Aeromycology—Main research fields of interest during the last 25 years. Annals of Agricultural and Environmental Medicine: AAEM, 15(1), 1–7. | |
| dc.relation.references | Kasprzyk, I., & Worek, M. (2006). Airborne fungal spores in urban and rural environments in Poland. Aerobiologia. https:// doi. org/ 10. 1007/ s10453- 006- 9029-8 | |
| dc.relation.references | Katotomichelakis, M., Nikolaidis, C., Makris, M., Proimos, E., Aggelides, X., Constantinidis, T. C., Papadakis, C. E., & Danielides, V. (2016). Alternaria and cladosporium cal endar of western thrace: Relationship with allergic rhi nitis symptoms. The Laryngoscope. https:// doi. org/ 10. 1002/ lary. 25594 | |
| dc.relation.references | Kilic, M., Altunoglu, M. K., Akdogan, G. E., Akpınar, S., Taskın, E., & Erkal, A. H. (2020). Airborne fungal spore relationships with meteorological parameters and skin prick test results in Elazig, Turkey. Journal of Environ mental Health Science and Engineering. https:// doi. org/ 10. 1007/ s40201- 020- 00545-1 | |
| dc.relation.references | Kim, K.-H., Kabir, E., & Jahan, S. A. (2018). Airborne bio aerosols and their impact on human health. Journal of Environmental Sciences, 67, 23–35. https:// doi. org/ 10. 1016/j. jes. 2017. 08. 027 | |
| dc.relation.references | King, E. A., Murphy, E., & Rice, H. J. (2011). Evaluating the impact on noise levels of a ban on private cars in Dub lin city centre, Ireland. Transportation Research Part d: Transport and Environment. https:// doi. org/ 10. 1016/j. trd. 2011. 05. 002 | |
| dc.relation.references | Kousha, M., Tadi, R., & Soubani, A. O. (2011). Pulmonary aspergillosis: A clinical review. European Respiratory Review, 20(121), 156–174. https:// doi. org/ 10. 1183/ 09059 180. 00001 011 | |
| dc.relation.references | Lacey, M., & West, J. (2006). The air spora: A manual for catching and identifying airborne biological particles. Springer. | |
| dc.relation.references | Lehmann, S., Sprünken, A., Wagner, N., Tenbrock, K., & Ott, H. (2017). Clinical relevance of IgE-mediated sensitiza tion against the mould Alternaria alternata in children with asthma. Therapeutic advances in respiratory dis ease. https:// doi. org/ 10. 1177/ 17534 65816 680786 | |
| dc.relation.references | Levetin, E., Horner, W. E., Scott, J. A., Barnes, C., Baxi, S., Chew, G. L., Grimes, C., Horner, W. E., Kennedy, K., Larenas-Linnemann, D., Levetin, E., Miller, J. D., Phi patanakul, W., Portnoy, J. M., Scott, J. A., & Williams, P. B. (2016). Taxonomy of allergenic fungi. The Journal of Allergy and Clinical Immunology: In Practice. https:// doi. org/ 10. 1016/j. jaip. 2015. 10. 012 | |
| dc.relation.references | Lin, W.-R., Chen, Y.-H., Lee, M.-F., Hsu, L.-Y., Tien, C.-J., Shih, F.-M., Hsiao, S.-C., & Wang, P.-H. (2016). Does spore count matter in fungal allergy?: The role of aller genic fungal species. Allergy, Asthma & Immunology Research, 8(5), 404–411. https:// doi. org/ 10. 4168/ aair. 2016.8. 5. 404 | |
| dc.relation.references | Liu, D. (2024). Classification of medically important fungi. In Y.-W. Tang, M. Y. Hindiyeh, D. Liu, A. Sails, P. Spear man, & J.-R. Zhang (Eds.), Molecular Medical Microbi ology (3rd ed., pp. 2763–2777). Academic Press. https:// doi. org/ 10. 1016/ B978-0- 12- 818619- 0. 00034-4 | |
| dc.relation.references | Lundbäck, B., Backman, H., Lötvall, J., & Rönmark, E. (2016). Is asthma prevalence still increasing? Expert Review of Respiratory Medicine, 10(1), 39–51. https:// doi. org/ 10. 1586/ 17476 348. 2016. 11144 17 | |
| dc.relation.references | Mantoani, M. C., Sapucci, C. R., Guerra, L. C. C., Andrade, M. F., Dias, M. A. F. S., Dias, P. L. S., Albrecht, R. I., Silva, E. P., Rodrigues, F., Araujo, G. G., Galante, D., Silva, D. M. C., Martins, J. A., Martins, L. D., Boschilia, S. M., Phillips, V. T. J., Carotenuto, F., Šantl-Temkiv, T., Mor ris, C. E., & Gonçalves, F. L. T. (2025). Airborne fun gal spore concentrations double but diversity decreases with warmer winter temperatures in the Brazilian Atlan tic Forest biodiversity hotspot. The Microbe, 7, Article 100300. https:// doi. org/ 10. 1016/j. microb. 2025. 100300 | |
| dc.relation.references | Mari, A., Schneider, P., Wally, V., Breitenbach, M., & Simon Nobbe, B. (2003). Sensitization to fungi: Epidemiol ogy, comparative skin tests, and IgE reactivity of fungal extracts. Clinical & Experimental Allergy, 33(10), 1429 1438. https:// doi. org/ 10. 1046/j. 1365- 2222. 2003. 01783.x | |
| dc.relation.references | Menezes, E. A., Gambale, W., Macedo, M. S., Castro, F., Paula, C. R., & Croce, J. (1998). Characterization of allergenic fractions from Drechslera monoceras. Journal of Investigational Allergology and Clinical Immunology, 8(4), 214–218. | |
| dc.relation.references | Millington, W. M., & Corden, J. M. (2005). Long term trends in outdoor Aspergillus/Penicillium spore concentrations in Derby, UK from 1970 to 2003 and a comparative study in 1994 and 1996 with the indoor air of two local houses. Aerobiologia, 21(2), 105–113. https:// doi. org/ 10. 1007/ s10453- 005- 4180-1 | |
| dc.relation.references | Moral, L., Roig, M., Garde, J., Alós, A., Toral, T., & Fuentes, M. J. (2008). Allergen sensitization in children with asthma and rhinitis: Marked variations related to age and microgeographical factors. Allergologia Et Immunopath ologia, 36(3), 128–133. https:// doi. org/ 10. 1016/ S0301- 0546(08) 72536-9 | |
| dc.relation.references | Naseer, S., Noor, M. J., & Iftikhar, S. (2024). Airborne pollen and spore monitoring for seasonal trends and dynamic interconnection with meteorological parameters in Raw alpindi city, Pakistan. Atmospheric Environment, 336, Article 120755. https:// doi. org/ 10. 1016/j. atmos env. 2024. 120755 | |
| dc.relation.references | Newson, R., Strachan, D., Corden, J., & Millington, W. (2000). Fungal and other spore counts as predictors of admis sions for asthma in the Trent region. Occupational and Environmental Medicine, 57(11), 786–792. https:// doi. org/ 10. 1136/ oem. 57. 11. 786 | |
| dc.relation.references | Nitiu, D. S., & Mallo, A. C. (2011). Seasonal variation of pollen and fungal spores in the atmosphere of Plata city (Argentina). Boletín De La Sociedad Argentina De Botánica, 46(3–4), 297–304. | |
| dc.relation.references | O’Gorman, C. M., & Fuller, H. T. (2008). Prevalence of cul turable airborne spores of selected allergenic and patho genic fungi in outdoor air. Atmospheric Environment. https:// doi. org/ 10. 1016/j. atmos env. 2008. 01. 009 | |
| dc.relation.references | Ogórek, R., Lejman, A., Pusz, W., Miłuch, A., & Miodyńska, P. (2012). Characteristics and taxonomy of Cladosporium fungi. Mikologia Lekarska, 19(2), 80–85. | |
| dc.relation.references | Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). Aeromycological profile of indoor and outdoor environ ments. Journal of Environmental Monitoring. https:// doi. org/ 10. 1039/ B8207 36D | |
| dc.relation.references | Olsen, Y., Skjøth, C. A., Hertel, O., Rasmussen, K., Sigsgaard, T., & Gosewinkel, U. (2020). Airborne Cladosporium and Alternaria spore concentrations through 26 years in Copenhagen, Denmark. Aerobiologia. https:// doi. org/ 10. 1007/ s10453- 019- 09618-7 | |
| dc.relation.references | Ortega Rosas, C. I., Calderón-Ezquerro, M. D. C., & Gutiérrez Ruacho, O. G. (2020). Fungal spores and pollen are cor related with meteorological variables: Effects in human health at Hermosillo, Sonora, Mexico. International Journal of Environmental Health Research, 30(6), Arti cle 6. https:// doi. org/ 10. 1080/ 09603 123. 2019. 16250 31 | |
| dc.relation.references | Ortega-Rosas, C. I., Medina-Félix, D., Macías-Duarte, A., & Gamez, T. (2025). A six-year airborne fungal spore cal endar for a city in the Sonoran Desert, Mexico: Impli cations for human health. Journal of Fungi, 11(3), 183. https:// doi. org/ 10. 3390/ jof11 030183 | |
| dc.relation.references | Pace, L., Boccacci, L., Casilli, M., & Fattorini, S. (2019). Tem poral variations in the diversity of airborne fungal spores in a Mediterranean high altitude site. Atmospheric Envi ronment, 210, 166–170. https:// doi. org/ 10. 1016/j. atmos env. 2019. 04. 059 | |
| dc.relation.references | Pasanen, A.-L., Rautiala, S., Kasanen, J.-P., Raunio, P., Ran tamäki, J., & Kalliokoski, P. (2000). The relationship between measured moisture conditions and fungal con centrations in water-damaged building materials. Indoor Air, 10(2), 111–120. https:// doi. org/ 10. 1034/j. 1600- 0668. 2000. 01000 2111.x | |
| dc.relation.references | Pashley, C. H., Fairs, A., Free, R. C., & Wardlaw, A. J. (2012). DNA analysis of outdoor air reveals a high degree of fun gal diversity, temporal variability, and genera not seen by spore morphology. Fungal Biology, 116(2), 214–224. https:// doi. org/ 10. 1016/j. funbio. 2011. 11. 004 | |
| dc.relation.references | Patel, T. Y., Buttner, M., Rivas, D., Cross, C., Bazylinski, D. A., & Seggev, J. (2018). Variation in airborne fungal spore concentrations among five monitoring locations in a desert urban environment. Environmental Monitoring and Assessment, 190(11), Article 11. https:// doi. org/ 10. 1007/ s10661- 018- 7008-5 | |
| dc.relation.references | Pawankar, R., Canonica, G. W., Holgate, S. T., & Lockey, R. F. (2011). Libro Blanco sobre Alergia de la WAO. 26. | |
| dc.relation.references | Pegas, P. N., Evtyugina, M. G., Alves, C. A., Nunes, T., Cer queira, M., Franchi, M., Pio, C., Almeida, S. M., & Frei tas, MdoC. (2010). Outdoor/indoor air quality in primary schools in Lisbon: A preliminary study. Química Nova, 33, 1145–1149. https:// doi. org/ 10. 1590/ S0100- 40422 01000 05000 27 | |
| dc.relation.references | Peternel, R., Culig, J., & Hrga, I. (2004). Atmospheric con centrations of Cladosporium spp. And Alternaria spp. Spores in Zagreb Croatia and effects of some meteoro logical factors. Annals of Agricultural and Environmental Medicine, 11(2), 303. | |
| dc.relation.references | Piontelli, E. (2008). aportes morfotaxonomicos en el genero aspergillus link: claves para las especies ambientales y clinicas mas comunes. Boletín Micológico, 28, 49–66. | |
| dc.relation.references | Pöhlker, C., Huffman, J. A., & Pöschl, U. (2012). Autofluores cence of atmospheric bioaerosols – fluorescent biomol ecules and potential interferences. Atmospheric Measure ment Techniques, 5(1), 37–71. https:// doi. org/ 10. 5194/ amt-5- 37- 2012 | |
| dc.relation.references | Polymenakou, P. N., & Mandalakis, M. (2013). Assess ing the short-term variability of bacterial composition in background aerosols of the Eastern Mediterranean during a rapid change of meteorological conditions. Aerobiologia, 29(3), 429–441. https:// doi. org/ 10. 1007/ s10453- 013- 9295-1 | |
| dc.relation.references | Pomés, A., Chapman, M. D., & Wünschmann, S. (2016). Indoor allergens and allergic respiratory disease. Current Allergy and Asthma Reports, 16(6), Article 43. https:// doi. org/ 10. 1007/ s11882- 016- 0622-9 | |
| dc.relation.references | Pongracic, J. A., O’Connor, G. T., Muilenberg, M. L., Vaughn, B., Gold, D. R., Kattan, M., Morgan, W. J., Gruchalla, R. S., Smartt, E., & Mitchell, H. E. (2010). Differential effects of outdoor versus indoor fungal spores on asthma morbidity in inner-city children. Journal of Allergy and Clinical Immunology, 125(3), 593–599. https:// doi. org/ 10. 1016/j. jaci. 2009. 10. 036 | |
| dc.relation.references | Pyrri, I., & Kapsanaki-Gotsi, E. (2015). Evaluation of the fungal aerosol in Athens, Greece, based on spore analy sis. Aerobiologia, 31(2), Article 2. https:// doi. org/ 10. 1007/ s10453- 014- 9355-1 | |
| dc.relation.references | Rad, H. D., Maleki, H., Goudarzi, G., Assarehzadegan, M.-A., Idani, I., Babaei, A. A., Neisi, A., Jahantab, S., Parishani, M. R., Dinarvand, M., Sorooshian, A., Nam joyan, F., & Pour, M. N. (2023). Investigating airborne pollen grains and fungal spores that might be related to thunderstorm asthma attacks. International Journal of Environmental Research, 17(2), 28. https:// doi. org/ 10. 1007/ s41742- 023- 00515-z | |
| dc.relation.references | Ranta, H., & Pessi, A. M. (2006). Pollen bulletin summary 2005. Finnish Pollen Bulletin, 30, 1–12. | |
| dc.relation.references | Raphoz, M., Goldberg, M. S., Garneau, M., Héguy, L., Valois, M.-F., & Guay, F. (2010). Associations between atmospheric concentrations of spores and emergency department visits for asthma among children living in Montreal. Archives of Environmental & Occupational Health, 65(4), 201–210. https:// doi. org/ 10. 1080/ 19338 24100 37309 37 | |
| dc.relation.references | Rapiejko, P., Stankiewicz, W., Szczygielski, K., & Jurk iewicz, D. (2007). Progowe stężenie pyłku roślin niezbędne do wywołania objawów alergicznych. Oto laryngologia Polska, 61(4), 591–594. https:// doi. org/ 10. 1016/ S0030- 6657(07) 70491-2 | |
| dc.relation.references | Reznik, Y. V., Yermishev, O. V., Palamarchuk, O. V., Bobrovska, O. A., & Rodinkova, V. V. (2023). Features of the seasonal dynamics of airborne fungal spore con centrations in Ukraine. Biosystems Diversity, 31(1), Article 1. https:// doi. org/ 10. 15421/ 012308 | |
| dc.relation.references | Rivera-Mariani, F. E., & Bolaños-Rosero, B. (2012). Aller genicity of airborne basidiospores and ascospores: Need for further studies. Aerobiologia, 28(2), 83–97. https:// doi. org/ 10. 1007/ s10453- 011- 9234-y | |
| dc.relation.references | Rivera-Mariani, F. E., Almaguer, M., Aira, M. J., & Bolaños Rosero, B. (2020). Comparison of atmospheric fungal spore concentrations between two main cities in the caribbean basin. Puerto Rico Health Sciences Journal, 39(3), 235. | |
| dc.relation.references | Rizzi-Longo, L., Pizzulin-Sauli, M., & Ganis, P. (2009). Sea sonal occurrence of Alternaria (1993-2004) and Epico ccum (1994-2004) spores in Trieste (NE Italy). Annals of Agricultural and Environmental Medicine, 16(1), 63–70. | |
| dc.relation.references | Rocha Estrada, A., Alvarado Vázquez, M. A., Gutiérrez Reyes, R., Salcedo Martínez, S. M., & Moreno Limón, S. (2013). Temporary change of spores Alternaria,Cladosporium, Coprinus, Curvularia and Venturia in air Monterrey metropolitan area, Nuevo Leon, Mexico. Revista Internacional De Contaminación Ambiental, 29(2), 155–165. | |
| dc.relation.references | Rodriguez-Gomez, C., Ramirez-Romero, C., Cordoba, F., Raga, G. B., Salinas, E., Martinez, L., Rosas, I., Quin tana, E. T., Maldonado, L. A., Rosas, D., Amador, T., Alvarez, H., & Ladino, L. A. (2020). Characterization of culturable airborne microorganisms in the Yucatan Pen insula. Atmospheric Environment, 223, Article 117183. https:// doi. org/ 10. 1016/j. atmos env. 2019. 117183 | |
| dc.relation.references | Roponen, M., Seuri, M., Nevalainen, A., & Hirvonen, M.-R. (2002). Fungal spores as such do not cause nasal inflam mation in mold exposure. Inhalation Toxicology, 14(5), 541–549. https:// doi. org/ 10. 1080/ 08958 37017 53678 616 | |
| dc.relation.references | Roy, S., & Gupta Bhattacharya, S. (2020). Airborne fungal spore concentration in an industrial township: Distribu tion and relation with meteorological parameters. Aero biologia. https:// doi. org/ 10. 1007/ s10453- 020- 09653-9 | |
| dc.relation.references | Roy, S., Chakraborty, A., Maitra, S., & Bhattacharya, K. (2017). Monitoring of airborne fungal spore load in rela tion to meteorological factors, air pollutants and allergic symptoms in Farakka, an unexplored biozone of east ern India. Environmental Monitoring and Assessment. https:// doi. org/ 10. 1007/ s10661- 017- 6044-x | |
| dc.relation.references | Sabariego, S., Bouso, V., & Perez-Badia, R. (2012). Compara tive study of airborne Alternaria conidia levels in two cities in Castilla-La Mancha (central Spain), and corre lations with weather-related variables. Annals of Agri cultural and Environmental Medicine, 19(2), Article 2. https:// bibli oteka nauki. pl/ artic les/ 49997 | |
| dc.relation.references | Sadyś, M., Strzelczak, A., Grinn-Gofroń, A., & Kennedy, R. (2015). Application of redundancy analysis for aerobio logical data. International Journal of Biometeorology. https:// doi. org/ 10. 1007/ s00484- 014- 0818-4 | |
| dc.relation.references | Sadyś, M., Adams-Groom, B., Herbert, R. J., & Kennedy, R. (2016). Comparisons of fungal spore distributions using air sampling at Worcester, England (2006–2010). Aero biologia. https:// doi. org/ 10. 1007/ s10453- 016- 9436-4 | |
| dc.relation.references | Şakiyan, N., & Inceoǧlu, Ö. (2003). Atmospheric concentra tions of Cladosporium Link and Alternaria Nées spores in Ankara and the effects of meteorological factors. Turk ish Journal of Botany, 27(2), 77–81. | |
| dc.relation.references | Salo, P. M., Arbes, S. J., Sever, M., Jaramillo, R., Cohn, R. D., London, S. J., & Zeldin, D. C. (2006). Exposure to Alter naria alternata in US homes is associated with asthma symptoms. Journal of Allergy and Clinical Immunology, 118(4), 892–898. https:// doi. org/ 10. 1016/j. jaci. 2006. 07. 037 | |
| dc.relation.references | Sánchez, P., Vélez-del-Burgo, A., Suñén, E., Martínez, J., & Postigo, I. (2022). Fungal allergen and mold allergy diag nosis: Role and relevance of Alternaria alternata Alt a 1 protein family. Journal of Fungi. https:// doi. org/ 10. 3390/ jof80 30277 | |
| dc.relation.references | Sánchez Espinosa, K. C., Aira, M. J., Fernández-González, M., & Rodríguez-Rajo, F. J. (2024). Airborne Alternaria spores: 70 annual records in Northwestern Spain. Jour nal of Fungi. https:// doi. org/ 10. 3390/ jof10 100681 | |
| dc.relation.references | Sarda-Estève, R., Baisnée, D., Guinot, B., Sodeau, J., O’Connor, D., Belmonte, J., Besancenot, J.-P., Petit, J.-E., Thibaudon, M., Oliver, G., Sindt, C., & Gros, V. (2019). Variability and geographical origin of five years airborne fungal spore concentrations measured at Saclay, France from 2014 to 2018. Remote Sensing. https:// doi. org/ 10. 3390/ rs111 41671 | |
| dc.relation.references | Ščevková, J., Hrabovský, M., Kováč, J., & Rosa, S. (2019). Intradiurnal variation of predominant airborne fungal spore biopollutants in the Central European urban envi ronment. Environmental Science and Pollution Research. https:// doi. org/ 10. 1007/ s11356- 019- 06616-7 | |
| dc.relation.references | Ščevková, J., Dušička, J., Tropeková, M., & Kováč, J. (2020). Summer storms and their effects on the spectrum and quantity of airborne bioparticles in Bratislava, Cen tral Europe. Environmental Monitoring and Assess ment, 192(8), Article 537. https:// doi. org/ 10. 1007/ s10661- 020- 08497-7 | |
| dc.relation.references | Ščevková, J., Vašková, Z., Dušička, J., Žilka, M., & Zvarík ová, M. (2023). Co-occurrence of airborne biological and anthropogenic pollutants in the central European urban ecosystem. Environmental Science and Pollution Research, 30(10), 26523–26534. https:// doi. org/ 10. 1007/ s11356- 022- 24048-8 | |
| dc.relation.references | Scott, J., Untereiner, W. A., Wong, B., Straus, N. A., & Mal loch, D. (2004). Genotypic variation in Penicilliumchy sogenum from indoor environments. Mycologia, 96(5), 1095–1105. https:// doi. org/ 10. 1080/ 15572 536. 2005. 11832 908 | |
| dc.relation.references | Sevindik, M., Akgül, H., & Tosunoglu, A. (2022). Temporal variations in fungal spores in Mardin city atmosphere, upper Mesopotamia, SE-Turkey. Grana. https:// doi. org/ 10. 1080/ 00173 134. 2021. 19768 25 | |
| dc.relation.references | Simović, I., Matavulj, P., & Šikoparija, B. (2023). Manual and automatic quantification of airborne fungal spores dur ing wheat harvest period. Aerobiologia, 39(2), 227–239. https:// doi. org/ 10. 1007/ s10453- 023- 09788-5 | |
| dc.relation.references | Singh, A. B., & Mathur, C. (2021). Fungal Aerobiology and Allergies in India: An Overview. In T. Satyanarayana, S. K. Deshmukh, & M. V. Deshpande (Eds.), Progress in Mycology: An Indian Perspective (pp. 397–417). Springer. https:// doi. org/ 10. 1007/ 978- 981- 16- 2350-9_ 14 | |
| dc.relation.references | Sio, Y. Y., Pang, S. L., Say, Y.-H., Teh, K. F., Wong, Y. R., Shah, S. M. R., Reginald, K., & Chew, F. T. (2021). Sen sitization to airborne fungal allergens associates with asthma and allergic rhinitis presentation and severity in the Singaporean/Malaysian population. Mycopathologia. https:// doi. org/ 10. 1007/ s11046- 021- 00532-6 | |
| dc.relation.references | Soleimani, Z., Goudarzi, G., Naddafi, K., Sadeghinejad, B., Latifi, S. M., Parhizgari, N., Alavi, N., Babaei, A. A., Akhoond, M. R., Khaefi, M., Rad, H. D., Mohammadi, M. J., & Shahsavani, A. (2013). Determination of cul turable indoor airborne fungi during normal and dust event days in Ahvaz, Iran. Aerobiologia, 29(2), 279–290. https:// doi. org/ 10. 1007/ s10453- 012- 9279-6 | |
| dc.relation.references | Sousa, L., Camacho, I. C., Grinn-Gofroń, A., & Camacho, R. (2016). Monitoring of anamorphic fungal spores in Madeira region (Portugal), 2003–2008. Aerobiologia. https:// doi. org/ 10. 1007/ s10453- 015- 9400-8 | |
| dc.relation.references | Suthar, M., Dufossé, L., & Singh, S. K. (2023). The enigmatic world of fungal melanin: A comprehensive review. Jour nal of Fungi, 9(9), 891. https:// doi. org/ 10. 3390/ jof90 90891 | |
| dc.relation.references | Symon, F. A., Anees-Hill, S., Satchwell, J., Fairs, A., Edwards, R., Wardlaw, A. J., Cuthbertson, L., Hansell, A. L., & Pashley, C. H. (2025). A fungal spore calendar for England: Analysis of 13 years of daily concentrations. Allergy, 80(2), 617–620. https:// doi. org/ 10. 1111/ all. 16356 | |
| dc.relation.references | Tham, R., Dharmage, S. C., Taylor, P. E., Katelaris, C. H., Vicendese, D., Abramson, M. J., & Erbas, B. (2014). Outdoor fungi and child asthma health service attend ances. Pediatric Allergy and Immunology. https:// doi. org/ 10. 1111/ pai. 12257 | |
| dc.relation.references | Tham, R., Katelaris, C. H., Vicendese, D., Dharmage, S. C., Lowe, A. J., Bowatte, G., Taylor, P., Burton, P., Abram son, M. J., & Erbas, B. (2017). The role of outdoor fungi on asthma hospital admissions in children and adoles cents: A 5-year time stratified case-crossover analysis. Environmental Research, 154, 42–49. https:// doi. org/ 10. 1016/j. envres. 2016. 12. 016 | |
| dc.relation.references | Tournas, V. H. (2005). Spoilage of vegetable crops by bacte ria and fungi and related health hazards. Critical Reviews in Microbiology, 31(1), 33–44. https:// doi. org/ 10. 1080/ 10408 41059 08860 24 | |
| dc.relation.references | Uk Lee, B., Lee, G., & Joon Heo, K. (2016). Concentration of culturable bioaerosols during winter. Journal of Aerosol Science, 94, 1–8. https:// doi. org/ 10. 1016/j. jaero sci. 2015. 12. 002 | |
| dc.relation.references | Vélez-Pereira, A. M., De Linares, C., Delgado, R., & Bel monte, J. (2016). Temporal trends of the airborne fungal spores in Catalonia (NE Spain), 1995–2013. Aerobio logia. https:// doi. org/ 10. 1007/ s10453- 015- 9410-6 | |
| dc.relation.references | Vélez-Pereira, A. M., De Linares, C., Canela, M. A., & Bel monte, J. (2023). A comparison of models for the fore cast of daily concentration thresholds of airborne fungal spores. Atmosphere, 14(6), Article 1016. https:// doi. org/ 10. 3390/ atmos 14061 016 | |
| dc.relation.references | Wainwright, M., Wickramasinghe, N. C., Narlikar, J. V., Raja ratnam, P., & Perkins, J. (2004). Confirmation of the presence of viable but non-cultureable bacteria in the stratosphere. International Journal of Astrobiology, 3(1), 13–15. https:// doi. org/ 10. 1017/ S1473 55040 40017 39 | |
| dc.relation.references | Webster, J., & Weber, R. (2007). Introduction to Fungi. Cam bridge University Press. | |
| dc.relation.references | Weryszko-Chmielewska, E., Kasprzyk, I., Nowak, M., Sul borska, A., Kaczmarek, J., Szymanska, A., Haratym, W., Gilski, M., & Jedryczka, M. (2018). Health hazards related to conidia of Cladosporium—Biological air pol lutants in Poland, central Europe. Journal of Environ mental Sciences, 65, 271–281. https:// doi. org/ 10. 1016/j. jes. 2017. 02. 018 | |
| dc.relation.references | Williams, P. B., Barnes, C. S., Portnoy, J. M., Barnes, C., Baxi, S., Grimes, C., Horner, W. E., Kennedy, K., Larenas Linnemann, D., Levetin, E., Miller, J. D., Phipatanakul, W., Portnoy, J. M., Scott, J., & Williams, P. B. (2016). Innate and adaptive immune response to fungal products and allergens. The Journal of Allergy and Clinical Immu nology: In Practice, 4(3), 386–395. https:// doi. org/ 10. 1016/j. jaip. 2015. 11. 016 | |
| dc.relation.references | Woo, A. C., Brar, M. S., Chan, Y., Lau, M. C. Y., Leung, F. C. C., Scott, J. A., Vrijmoed, L. L. P., Zawar-Reza, P., & Pointing, S. B. (2013). Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmospheric Environment, 74, 291–300. https:// doi. org/ 10. 1016/j. atmos env. 2013. 03. 047 | |
| dc.relation.references | Yang, C. S., & Heinsohn, P. A. (2007). Sampling and Analysis of Indoor Microorganisms. John Wiley & Sons. | |
| dc.relation.references | Yepes-Nuñez, J. J., Urrútia, G., Romero-García, M., & Alonso Fernández, S. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Revista Espa ñola De Cardiología, 74(9), 790–799. https:// doi. org/ 10. 1016/j. recesp. 2021. 06. 016 | |
| dc.relation.references | Zhai, Y., Li, X., Wang, T., Wang, B., Li, C., & Zeng, G. (2018). A review on airborne microorganisms in particulate mat ters: Composition, characteristics and influence factors. Vol:. (1234567890) Environment International, 113, 74–90. https:// doi. org/ 10. 1016/j. envint. 2018. 01. 007 | |
| dc.relation.references | Žilka, M., Hrabovský, M., Dušička, J., Zahradníková, E., Gahurová, D., & Ščevková, J. (2024). Comparative anal ysis of airborne fungal spore distribution in urban and rural environments of Slovakia. Environmental Science and Pollution Research, 31(54), 63145–63160. https:// doi. org/ 10. 1007/ s11356- 024- 35470-5 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject.lemb | Esporas fúngicas aerotransportadas | |
| dc.subject.lemb | Hongos microscópicos | |
| dc.subject.lemb | Calidad del aire | |
| dc.subject.lemb | Enfermedades respiratorias | |
| dc.subject.lemb | Epidemiología ambiental | |
| dc.subject.lemb | Vigilancia ambiental Salud pública | |
| dc.subject.lemb | Alergias respiratorias | |
| dc.subject.lemb | Airborne fungal spores | |
| dc.subject.lemb | Microscopic fungi | |
| dc.subject.lemb | Air quality | |
| dc.subject.lemb | Respiratory diseases | |
| dc.subject.lemb | Environmental epidemiology | |
| dc.subject.lemb | Environmental monitoring | |
| dc.subject.lemb | Public health | |
| dc.subject.lemb | Respiratory allergies | |
| dc.subject.ocde | 3. Ciencias Médicas y de la Salud | |
| dc.subject.ods | ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades | |
| dc.subject.proposal | Aerobiology Bioaerosols | |
| dc.subject.proposal | Fungal spores | |
| dc.subject.proposal | Health effects | |
| dc.subject.proposal | Meteorological variables | |
| dc.subject.proposal | Respiratory allergies | |
| dc.subject.proposal | Outdoor air | |
| dc.title | Relationship of airborne fungal spores to epidemiological data on respiratory disease: a systematic review | |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dcterms.audience | Comunidad científica y académica. | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 74ceb186-b60b-4210-9548-9a89e1a8f37b | |
| relation.isAuthorOfPublication | 6df75638-aa32-419a-b8c0-bf5fa2109b24 | |
| relation.isAuthorOfPublication.latestForDiscovery | 74ceb186-b60b-4210-9548-9a89e1a8f37b |