Browsing by Author "Torrens, F."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Generalized molecular descriptors derived from event-based discrete derivative(Bentham Science Publishers B.V., 2016) Martínez-Santiago O.; Cabrera R.M.; Marrero-Ponce Y.; Barigye S.J.; Le-Thi-Thu H.; Torres, Javier; Zambrano C.H.; Yaber Goenaga, Iván; Cruz-Monteagudo, M.; López Y.M.; Giménez F.P.; Torrens, F.In the present study, a generalized approach for molecular structure characterization is introduced, based on the relation frequency matrix (F) representation of the molecular graph and the subsequent calculation of the corresponding discrete derivative (finite difference) over a pair of elements (atoms). In earlier publications (22-24), an unique event, named connected subgraphs, (based on the Kier-Hall’s subgraphs) was systematically employed for the computation of the matrix F. The present report is a generalization of this notion, in which eleven additional events are introduced, classified in three categories, namely, topological (terminal paths, vertex path incidence, quantum subgraphs, walks of length k, Sach’s subgraphs), fingerprints (MACCs, E-state and substructure fingerprints) and atomic contributions (Ghose and Crippen atom-types for hydrophobicity and refractivity) for F generation. The events are intended to capture diverse information by the generation or search of different kinds of substructures from the graph representation of a molecule. The discrete derivative over duplex atom relations are calculated for each event, and the resulting derivatives, local vertex invariants (LOVIs) are finally obtained. These LOVIs are subsequently employed as the basis for the calculation of global and local indices over groups of atoms (heteroatoms, halogens, methyl carbons, etc.), by using norms, means, statistics and classical algorithms as aggregator (fusion) operators. These indices were implemented in our house software DIVATI (Derivative Type Indices, a new module of TOMOCOMDCARDD system). DIVATI provides a friendly and cross-platform graphical user interface, developed in the Java programming language and is freely available at: http: //www.tomocomd.com. Factor analysis shows that the presented events are rather orthogonal and collect diverse information about the chemical structure. Finally, QSPR models were built to describe the logP and logK of 34 furylethylenes derivatives using the eleven events. Generally, the equations obtained according to these events showed high correlations, with the Sach’s sub-graphs and Multiplicity events showing the best behavior in the description of logK (Q2LOO value of 99.06%) and logP (Q2LOO value of 98.1%), respectively. These results show that these new eventbased indices constitute a powerful approach for chemoinformatics studies. © 2016 Bentham Science Publishers.Item In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach(Sociedade Brasileira de Quimica, 2015) Castillo-Garit, J.A.; Marrero-Ponce, Y.; Barigye, S.J.; Medina-Marrero, R.; Bernal, M.G.; De La Vega, J.M.G.; Torrens, F.; Arán, V.J.; Pérez-Giménez, F.; García-Domenech, R.; Acevedo Barrios, RosaIn the recent times, the race to cope with the increasing multidrug resistance of pathogenic bacteria has lost much of its momentum and health professionals are grasping for solutions to deal with the unprecedented resistance levels. As a result, there is an urgent need for a concerted effort towards the development of new antimicrobial drugs to stay ahead in the fight against the ever adapting bacteria. In the present report, antibacterial classification functions (models) based on the topological molecular computational design-computer aided "rational" drug design (TOMOCOMD-CARDD) atom-based non-stochastic and stochastic bilinear indices are presented. These models were built using the linear discriminant analysis (LDA) method over a balanced chemical compounds dataset of 2230 molecular structures, with a diverse range of structural and molecular mechanism modes. The results of this study indicated that the non-stochastic and stochastic bilinear indices provided excellent classification of the chemical compounds (with accuracies of 86.31% and 84.92%, respectively, in the training set). These models were further externally validated yielding correct classification percentages of 86.55% and 87.91% for the non-stochastic and stochastic bilinear models, respectively. Additionally, the obtained models were compared with those reported in the literature and demonstrated comparable results, although the latter were built over much smaller datasets and with much higher degrees of freedom. Finally, simulated ligand-based virtual screening of 116 compounds, recently identified as potential antibacterials, was performed yielding 86.21% and 83.62% of correct classification, respectively, and thus demonstrating the utility of the obtained TOMOCOMD-CARDD models in the search of novel compounds with desirable antibacterial activity. © 2015 Sociedade Brasileira de Química.Item QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents(Taylor and Francis Ltd., 2015) Medina Marrero R.; Marrero-Ponce Y.; Barigye S.J.; Echeverría Díaz Y.; Acevedo Barrios, Rosa; Casañola-Martín G.M.; García Bernal M.; Torrens, F.; Pérez-Giménez F.The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections. © 2015 Taylor & Francis.