Browsing by Author "Pérez-Giménez F."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Multi-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins(Bentham Science Publishers B.V., 2016) Casañola-Martín G.M.; Le-Thi-Thu H.; Pérez-Giménez F.; Marrero-Ponce Y.; Merino-Sanjuán M.; Abad C.; González-Díaz H.The ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory proteins. Cellular processes such as the cell cycle, signal transduction, gene expression, DNA repair and apoptosis are regulated by this UPP and dysfunctions in this system have important implications in the development of cancer, neurodegenerative, cardiac and other human pathologies. UPP seems also to be very important in the function of eukaryote cells of the human parasites like Plasmodium falciparum, the causal agent of the neglected disease Malaria. Hence, the UPP could be considered as an attractive target for the development of compounds with Anti-Malarial or Anti-cancer properties. Recent online databases like ChEMBL contains a larger quantity of information in terms of pharmacological assay protocols and compounds tested as UPP inhibitors under many different conditions. This large amount of data give new openings for the computer-aided identification of UPP inhibitors, but the intrinsic data diversity is an obstacle for the development of successful classifiers. To solve this problem here we used the Bob-Jenkins moving average operators and the atom-based quadratic molecular indices calculated with the software TOMOCOMD-CARDD (TC) to develop a quantitative model for the prediction of the multiple outputs in this complex dataset. Our multi-target model can predict results for drugs against 22 molecular or cellular targets of different organisms with accuracies above 70% in both training and validation sets. © 2016 Bentham Science Publishers.Item QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents(Taylor and Francis Ltd., 2015) Medina Marrero R.; Marrero-Ponce Y.; Barigye S.J.; Echeverría Díaz Y.; Acevedo Barrios, Rosa; Casañola-Martín G.M.; García Bernal M.; Torrens, F.; Pérez-Giménez F.The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections. © 2015 Taylor & Francis.