Browsing by Author "Amin W.T."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation(Springer, 2019) Amin W.T.; Montoya O.D.; Grisales-Noreña L.F.; Figueroa-Garcia J.C.; Duarte-Gonzalez M.; Jaramillo-Isaza S.; Orjuela-Canon A.D.; Diaz-Gutierrez Y.This paper addresses the voltage collapse analysis in direct-current (DC) power grids via nonlinear optimization approach. The formulation of this problem corresponds to an optimization problem, where the objective function is the maximization of the loadability consumption at all the constant power loads, subject to the conventional power flow balance equations. To solve this nonlinear non-convex optimization problem a large-scale nonlinear optimization package known as General Algebraic Modeling System (GAMS) is employed. Different nonlinear solvers available in GAMS are used to confirm that the optimal solution has been reached. A small 4-node test system is used to illustrate the GAMS implementation. Finally, two test systems with 21 and 33 nodes respectively, are used for simulation purposes in order to confirm both the effectiveness and robustness of the nonlinear model, and the proposed GAMS solution methodology. © 2019, Springer Nature Switzerland AG.Item Voltage and Frequency Regulation on Isolated AC Three-phase Microgrids via s-DERs(IEEE Computer Society, 2019) Amin W.T.; Montoya O.D.; Garrido Arévalo, Víctor Manuel; Gil-González W.; Garces A.This paper addresses the voltage regulation problem on isolated three-phase microgrids via passivity-based control (PBC) with a proportional regulator under the abc reference frame. This reference frame is employed to design the proportional controllers to support voltage and frequency profiles on time-varying loads through a combination of small distributed energy resources and battery energy storage systems. The proposed approach avoids using frequency measurements and reduces the complexity of the control problem. PBC theory exploits natural port-Hamiltonian formulations of the power electronic converters to design controllers, guaranteeing stability for closed-loop operation. Two passivity-based proportional controllers are proposed and compared with conventional proportional actions reported in specialized literature. Simulation results show the effectiveness and robustness of the proposed approach to fulfill the control tasks. © 2019 IEEE.Item Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology(Springer, 2019) Montoya O.D.; Grisales-Noreña L.F.; Amin W.T.; Rojas L.A.; Campillo Jiménez, Javier Eduardo; Figueroa-Garcia J.C.; Duarte-Gonzalez M.; Jaramillo-Isaza S.; Orjuela-Canon A.D.; Diaz-Gutierrez Y.This paper proposes a vortex search algorithm (VSA) optimization for optimal dimensioning of distributed generators (DGs), in radial alternating current (AC) distribution networks. The VSA corresponds to a metaheuristic optimization technique that works in the continuous domain, to solve nonlinear, non-convex, large scale optimization problems. Here, this technique is used to determine the optimal power generation capacity of the DGs from the top-down analysis. From the bottom-up, a conventional backward/forward power flow is employed for determining the voltage behavior and calculate the power losses of the network, for each power output combination in the DGs. Numerical results demonstrate that the proposed approach is efficient and robust for reducing power losses on AC grids by optimally sizing the capacity the DGs, compared with other approaches found on literature reports. All the simulations were conducted using the MATLAB software. © 2019, Springer Nature Switzerland AG.