Browsing by Author "Šorel M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Improving the blind restoration of retinal images by means of point-spread-function estimation assessment(SPIE, 2015) Marrugo A.G.; Millán M.S.; Šorel M.; Kotera J.; Šroubek F.; Romero E.; Lepore N.Retinal images often suffer from blurring which hinders disease diagnosis and progression assessment. The restoration of the images is carried out by means of blind deconvolution, but the success of the restoration depends on the correct estimation of the point-spread-function (PSF) that blurred the image. The restoration can be space-invariant or space-variant. Because a retinal image has regions without texture or sharp edges, the blind PSF estimation may fail. In this paper we propose a strategy for the correct assessment of PSF estimation in retinal images for restoration by means of space-invariant or space-invariant blind deconvolution. Our method is based on a decomposition in Zernike coefficients of the estimated PSFs to identify valid PSFs. This significantly improves the quality of the image restoration revealed by the increased visibility of small details like small blood vessels and by the lack of restoration artifacts. © 2015 SPIE.Item Restoration of retinal images with space-variant blur(2014) Marrugo A.G.; Millán M.S.; Šorel M.; Šroubek F.Retinal images are essential clinical resources for the diagnosis of retinopathy and many other ocular diseases. Because of improper acquisition conditions or inherent optical aberrations in the eye, the images are often degraded with blur. In many common cases, the blur varies across the field of view. Most image deblurring algorithms assume a space-invariant blur, which fails in the presence of space-variant (SV) blur. In this work, we propose an innovative strategy for the restoration of retinal images in which we consider the blur to be both unknown and SV. We model the blur by a linear operation interpreted as a convolution with a point-spread function (PSF) that changes with the position in the image. To achieve an artifact-free restoration, we propose a framework for a robust estimation of the SV PSF based on an eye-domain knowledge strategy. The restoration method was tested on artificially and naturally degraded retinal images. The results show an important enhancement, significant enough to leverage the images' clinical use. © 2014 Society of Photo-Optical Instrumentation Engineers.