Show simple item record

dc.creatorMontoya, O.D.
dc.date.accessioned2019-11-06T19:05:21Z
dc.date.available2019-11-06T19:05:21Z
dc.date.issued2019
dc.identifier.citationEngineering Science and Technology, an International Journal
dc.identifier.issn2215-0986
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8767
dc.description.abstractThis paper proposes a convex approximation approach for solving the optimal power flow (OPF) problem in direct current (DC) networks with constant power loads by using a sequential quadratic programming approach. A linearization method based on the Taylor series is used for the convexification of the power balance equations. For selecting the best candidate nodes for optimal location of distributed generators (DGs) on a DC network, a relaxation of the binary variables that represent the DGs location is proposed. This relaxation allows identifying the most important nodes for reducing power losses as well as the unimportant nodes. The optimal solution obtained by the proposed convex model is the best possible solution and serves for adjusting combinatorial optimization techniques for recovering the binary characteristics of the decision variables. The solution of the non-convex OPF model is achieved via GAMS software in conjunction with the CONOPT solver; in addition the sequential quadratic programming model is solved via quadprog from MATLAB for reducing the estimation errors in terms of calculation of the power losses. To compare the results of the proposed convex model, three metaheuristic approaches were employed using genetic algorithms, particle swarm optimization, continuous genetic algorithms, and black hole optimizers. © 2019 Karabuk Universityeng
dc.description.sponsorshipUniversidad Tecnológica de Pereira, UTP: C2018P020, Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS, Department of Science, Information Technology and Innovation, Queensland Government, DSITI
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier B.V.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85068989753&doi=10.1016%2fj.jestch.2019.06.010&partnerID=40&md5=e49682c8ba7c24b0aae90ebd13b55237
dc.sourceScopus 56919564100
dc.titleA convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks
dcterms.bibliographicCitationAbdi, H., Beigvand, S.D., Scala, M.L., A review of optimal power flow studies applied to smart grids and microgrids (2017) Renewable Sustainable Energy Rev., 71, pp. 742-766
dcterms.bibliographicCitationAhmed, H.M.A., Eltantawy, A.B., Salama, M.M.A., A planning approach for the network configuration of ac-dc hybrid distribution systems (2018) IEEE Trans. Smart Grid, 9 (3), pp. 2203-2213
dcterms.bibliographicCitationAlam, M.S., Miah, M.D., Hammoudeh, S., Tiwari, A.K., The nexus between access to electricity and labour productivity in developing countries (2018) Energy Policy, 122, pp. 715-726
dcterms.bibliographicCitationFletcher, J.R.E., Fernando, T., Iu, H.H., Reynolds, M., Fani, S., Spatial optimization for the planning of sparse power distribution networks (2018) IEEE Trans. Power Syst., 33 (6), pp. 6686-6695
dcterms.bibliographicCitationFortenbacher, P., Demiray, T., Linear/quadratic programming-based optimal power flow using linear power flow and absolute loss approximations (2019) Int. J. Electr. Power Energy Syst., 107, pp. 680-689
dcterms.bibliographicCitationGarces, A., A linear three-phase load flow for power distribution systems (2016) IEEE Trans. Power Syst., 31 (1), pp. 827-828
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153
dcterms.bibliographicCitationGarces, A., On the convergence of newton's method in power flow studies for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5770-5777
dcterms.bibliographicCitationGarces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal HVDC systems considering DC/DC converters (2016) 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217
dcterms.bibliographicCitationGavriluta, C., Candela, I., Citro, C., Luna, A., Rodriguez, P., Design considerations for primary control in multi-terminal VSC-HVDC grids (2015) Electr. Power Syst. Res., 122, pp. 33-41
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J. Energy Storage, 21, pp. 1-8
dcterms.bibliographicCitationGrisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (1018), pp. 1-27
dcterms.bibliographicCitationHou, K., Xu, X., Jia, H., Yu, X., Jiang, T., Zhang, K., Shu, B., A reliability assessment approach for integrated transportation and electrical power systems incorporating electric vehicles (2018) IEEE Trans. Smart Grid, 9 (1), pp. 88-100
dcterms.bibliographicCitationKaur, S., Kumbhar, G., Sharma, J., A MINLP technique for optimal placement of multiple DG units in distribution systems (2014) Int. J. Electr. Power Energy Syst. 63 (Supplement, C), pp. 609-617
dcterms.bibliographicCitationKeane, A., Ochoa, L.F., Borges, C.L.T., Ault, G.W., Alarcon-Rodriguez, A.D., Currie, R.A.F., Pilo, F., Harrison, G.P., State-of-the-art techniques and challenges ahead for distributed generation planning and optimization (2013) IEEE Trans. Power Syst., 28 (2), pp. 1493-1502
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., , 1–1
dcterms.bibliographicCitationLi, R., Wang, W., Xia, M., Cooperative planning of active distribution system with renewable energy sources and energy storage systems (2018) IEEE Access, 6, pp. 5916-5926
dcterms.bibliographicCitationLotfi, H., Khodaei, A., AC versus DC microgrid planning (2017) IEEE Trans. Smart Grid, 8 (1), pp. 296-304
dcterms.bibliographicCitationMao, Y., Zhang, J., Letaief, K.B., Grid energy consumption and QoS tradeoff in hybrid energy supply wireless networks (2016) IEEE Trans. Wireless Commun., 15 (5), pp. 3573-3586
dcterms.bibliographicCitationMasrur, M.A., Toward ground vehicle electrification in the u.s. army: an overview of recent activities (2016) IEEE Electrific. Mag., 4 (1), pp. 33-45
dcterms.bibliographicCitationMasteri, K., Venkatesh, B., Freitas, W., A feeder investment model for distribution system planning including battery energy storage (2018) Fall Canadian J. Elect. Comput. Eng., 41 (4), pp. 162-171
dcterms.bibliographicCitationMateo Domingo, C., Gomez San Roman, T., Sanchez-Miralles, A., Peco Gonzalez, J.P., Candela Martinez, A., A reference network model for large-scale distribution planning with automatic street map generation (2011) IEEE Trans. Power Syst., 26 (1), pp. 190-197
dcterms.bibliographicCitationMehar, S., Zeadally, S., Rémy, G., Senouci, S.M., Sustainable transportation management system for a fleet of electric vehicles (2015) IEEE Trans. Intell. Transp. Syst., 16 (3), pp. 1401-1414
dcterms.bibliographicCitationMohamed, S., Shaaban, M.F., Ismail, M., Serpedin, E., Qaraqe, K.A., An efficient planning algorithm for hybrid remote microgrids (2019) IEEE Trans. Sustain. Energy, 10 (1), pp. 257-267
dcterms.bibliographicCitationMontoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs With CPLs via an SDP model (2019) IEEE Trans. Circuits Syst. II, 66 (4), pp. 642-646
dcterms.bibliographicCitationMontoya, O.D., On linear analysis of the power flow equations for DC and AC grids with CPLs (2019) IEEE Trans. Circuits Syst., 2, pp. 1-5
dcterms.bibliographicCitationMontoya, O.D., Garrido, V.M., Gil-González, W., Grisales-Noreña, L., Power flow analysis in dc grids: two alternative numerical methods (2019) IEEE Trans. Circuits Syst., 2, pp. 1-5
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation (2019) IEEE Trans. Circuits Syst. II, 66 (6), pp. 1018-1022
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Grisales-Noreña, L.F., Optimal power dispatch of DGs in DC power grids: a hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem (2018) WSEAS Transactions on Power Systems, 13 (33), pp. 335-346
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electr. Power Syst. Res., 169, pp. 18-23
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381
dcterms.bibliographicCitationNasir, M., Iqbal, S., Khan, H.A., Optimal planning and design of low-voltage low-power solar DC microgrids (2018) IEEE Trans. Power Syst., 33 (3), pp. 2919-2928
dcterms.bibliographicCitationNasir, M., Khan, H.A., Zaffar, N.A., Vasquez, J.C., Guerrero, J.M., Scalable solar dc micrigrids: on the path to revolutionizing the electrification architecture of developing communities (2018) IEEE Electrific. Mag., 6 (4), pp. 63-72
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925
dcterms.bibliographicCitationRaghavan, S.S., Khaligh, A., Electrification potential factor: energy-based value proposition analysis of plug-in hybrid electric vehicles (2012) IEEE Trans. Veh. Technol., 61 (3), pp. 1052-1059
dcterms.bibliographicCitationSimpson-Porco, J.W., Dorfler, F., Bullo, F., Networks, A.O.R., Briefs of constant-power devices (2015) IEEE Trans. Circuits Syst. II Express, 62 (8), pp. 811-815
dcterms.bibliographicCitationSteinbuks, J., Assessing the accuracy of electricity production forecasts in developing countries (2019) Int. J. Forecasting
dcterms.bibliographicCitationSudabattula, S.K., Kowsalya, M., Optimal allocation of solar based distributed generators in distribution system using Bat algorithm (2016) Perspect. Sci., 8, pp. 270-272. , recent Trends in Engineering and Material Sciences
dcterms.bibliographicCitationSultana, S., Roy, P.K., Krill herd algorithm for optimal location of distributed generator in radial distribution system (2016) Appl. Soft Comput., 40, pp. 391-404
dcterms.bibliographicCitationVelasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Noreña, L.F., Optimal power flow in direct-current power grids via black hole optimization (2019) Adv. Electr. Electron. Eng., 17 (1), pp. 24-32
dcterms.bibliographicCitationWang, P., Zhang, L., Xu, D., Optimal Sizing of Distributed Generations in DC Microgrids with Lifespan Estimated Model of Batteries (2018) 2018 21st International Conference on Electrical Machines and Systems (ICEMS), pp. 2045-2049
dcterms.bibliographicCitationWashburn, C., Pablo-Romero, M., Measures to promote renewable energies for electricity generation in Latin American countries (2019) Energy Policy, 128, pp. 212-222
dcterms.bibliographicCitationZheng, G., Huang, Q., Energy optimization study of rural deep well two-stage water supply pumping station (2016) IEEE Trans. Control Syst. Technol., 24 (4), pp. 1308-1316
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.doi10.1016/j.jestch.2019.06.010
dc.subject.keywordsConvex model
dc.subject.keywordsDirect current networks
dc.subject.keywordsLinear power flow approximation
dc.subject.keywordsOptimal power flow
dc.subject.keywordsPower loss reduction
dc.subject.keywordsRelaxation of binary variables
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.