Show simple item record

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.contributor.authorHernández, Jesus C.
dc.date.accessioned2021-02-15T16:14:19Z
dc.date.available2021-02-15T16:14:19Z
dc.date.issued2020-12-09
dc.date.submitted2021-02-12
dc.identifier.citationMontoya, Oscar D.; Gil-González, Walter; Hernández, Jesus C. 2020. "Optimal Selection and Location of BESS Systems in Medium-Voltage Rural Distribution Networks for Minimizing Greenhouse Gas Emissions" Electronics 9, no. 12: 2097. https://doi.org/10.3390/electronics9122097spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9999
dc.description.abstractThis paper explores a methodology to locate battery energy storage systems (BESS) in rural alternating current (AC) distribution networks fed by diesel generators to minimize total greenhouse gas emissions. A mixed-integer nonlinear programming (MINLP) model is formulated to represent the problem of greenhouse gas emissions minimization, considering power balance and devices capabilities as constraints. To model the BESS systems, a linear relationship is considered between the state of charge and the power injection/consumption using a charging/discharging coefficient. The solution of the MINLP model is reached through the general algebraic modeling system by employing the BONMIN solver. Numerical results in a medium-voltage AC distribution network composed of 33 nodes and 32 branches operated with 12.66 kV demonstrate the effectiveness of including BESS systems to minimize greenhouse gas emissions in diesel generators that feeds rural distribution networks.spa
dc.format.extent15 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics 2020, 9(12), 2097spa
dc.titleOptimal selection and location of bess systems in medium-voltage rural distribution networks for minimizing greenhouse gas emissionsspa
dcterms.bibliographicCitationStrunz, K.; Abbasi, E.; Huu, D.N. DC microgrid for wind and solar power integration. IEEE Trans. Emerg. Sel. Top. Power Electron. 2013, 2, 115–126spa
dcterms.bibliographicCitationArshad, M.; O’Kelly, B. Global status of wind power generation: Theory, practice, and challenges. Int. J. Green Energy 2019, 16, 1073–1090.spa
dcterms.bibliographicCitationRuiz-Rodriguez, F.; Hernández, J.; Jurado, F. Probabilistic load flow for photovoltaic distributed generation using the Cornish–Fisher expansion. Electr. Power Syst. Res. 2012, 89, 129–138spa
dcterms.bibliographicCitationRuiz-Rodriguez, F.J.; Hernandez, J.; Jurado, F. Probabilistic load flow for radial distribution networks with photovoltaic generators. IET Renew. Power Gener. 2012, 6, 110–121.spa
dcterms.bibliographicCitationMahabir, R.; Shrestha, R.M. Climate change and forest management: Adaptation of geospatial technologies. In Proceedings of the 2015 Fourth International Conference on Agro-Geoinformatics (Agro-geoinformatics), Istanbul, Turkey, 20–24 July 2015; pp. 209–214spa
dcterms.bibliographicCitationNematollahi, O.; Hoghooghi, H.; Rasti, M.; Sedaghat, A. Energy demands and renewable energy resources in the Middle East. Renew. Sustain. Energy Rev. 2016, 54, 1172–1181.spa
dcterms.bibliographicCitationGrisales-Noreña, L.; Montoya, O.D.; Gil-González, W. Integration of energy storage systems in AC distribution networks: Optimal location, selecting, and operation approach based on genetic algorithms. J. Energy Storage 2019, 25, 100891.spa
dcterms.bibliographicCitationZimmermann, A.W.; Sharkh, S.M. Design of a 1 MJ/100 kW high temperature superconducting magnet for energy storage. Energy Rep. 2020, 6, 180–188.spa
dcterms.bibliographicCitationde Carvalho, W.C.; Bataglioli, R.P.; Fernandes, R.A.; Coury, D.V. Fuzzy-based approach for power smoothing of a full-converter wind turbine generator using a supercapacitor energy storage. Electr. Power Syst. Res. 2020, 184, 106287spa
dcterms.bibliographicCitationMansour, M.; Mansouri, M.; Bendoukha, S.; Mimouni, M. A grid-connected variable-speed wind generator driving a fuzzy-controlled PMSG and associated to a flywheel energy storage system. Electr. Power Syst. Res. 2020, 180, 106137spa
dcterms.bibliographicCitationFan, J.; Xie, H.; Chen, J.; Jiang, D.; Li, C.; Tiedeu, W.N.; Ambre, J. Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs. Appl. Energy 2020, 258, 114007.spa
dcterms.bibliographicCitationSoltani, M.; Nabat, M.H.; Razmi, A.R.; Dusseault, M.; Nathwani, J. A comparative study between ORC and Kalina based waste heat recovery cycles applied to a green compressed air energy storage (CAES) system. Energy Convers. Manag. 2020, 222, 113203spa
dcterms.bibliographicCitationHernandez, J.C.; Bueno, P.G.; Sanchez-Sutil, F. Enhanced utility-scale photovoltaic units with frequency support functions and dynamic grid support for transmission systems. IET Renew. Power Gener. 2017, 11, 361–372.spa
dcterms.bibliographicCitationHernández, J.C.; Sanchez-Sutil, F.; Vidal, P.; Rus-Casas, C. Primary frequency control and dynamic grid support for vehicle-to-grid in transmission systems. Int. J. Electr. Power Energy Syst. 2018, 100, 152–166spa
dcterms.bibliographicCitationDivya, K.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520.spa
dcterms.bibliographicCitationGo, S.I.; Choi, J.H. Design and Dynamic Modelling of PV-Battery Hybrid Systems for Custom Electromagnetic Transient Simulation. Electronics 2020, 9, 1651.spa
dcterms.bibliographicCitationLIU, W.; NIU, S.; XU, H. Optimal planning of battery energy storage considering reliability benefit and operation strategy in active distribution system. J. Mod Power Syst. Clean Energy 2016, 5, 177–186spa
dcterms.bibliographicCitationLi, X.; Hui, D.; Lai, X. Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations. IEEE Trans. Sustain. Energy 2013, 4, 464–473.spa
dcterms.bibliographicCitationZhao, H.; Wu, Q.; Hu, S.; Xu, H.; Rasmussen, C.N. Review of energy storage system for wind power integration support. Appl. Energy 2015, 137, 545–553spa
dcterms.bibliographicCitationPoullikkas, A. A comparative overview of large-scale battery systems for electricity storage. Renew. Sustain. Energy Rev. 2013, 27, 778–788spa
dcterms.bibliographicCitationCelli, G.; Mocci, S.; Pilo, F.; Loddo, M. Optimal integration of energy storage in distribution networks. In Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009; pp. 1–7.spa
dcterms.bibliographicCitationCapizzi, G.; Bonanno, F.; Napoli, C. Recurrent neural network-based control strategy for battery energy storage in generation systems with intermittent renewable energy sources. In Proceedings of the 2011 International Conference on Clean Electrical Power (ICCEP), Puglia, Italy 2–4 July 2011; pp. 336–340.spa
dcterms.bibliographicCitationBarnes, A.K.; Balda, J.C.; Escobar-Mejía, A.; Geurin, S.O. Placement of energy storage coordinated with smart PV inverters. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–7.spa
dcterms.bibliographicCitationKaranki, S.B.; Xu, D.; Venkatesh, B.; Singh, B.N. Optimal location of battery energy storage systems in power distribution network for integrating renewable energy sources. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 4553–4558.spa
dcterms.bibliographicCitationWei, C.; Fadlullah, Z.M.; Kato, N.; Stojmenovic, I. On optimally reducing power loss in micro-grids with power storage devices. IEEE J. Sel. Areas Commun. 2014, 32, 1361–1370.spa
dcterms.bibliographicCitationXiao, J.; Zhang, Z.; Bai, L.; Liang, H. Determination of the optimal installation site and capacity of battery energy storage system in distribution network integrated with distributed generation. IET Gener. Transm. Distrib. 2016, 10, 601–607spa
dcterms.bibliographicCitationDi Somma, M.; Graditi, G.; Heydarian-Forushani, E.; Shafie-khah, M.; Siano, P. Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects. Renew. Energy 2018, 116, 272–287spa
dcterms.bibliographicCitationLiu, K.; Zou, C.; Li, K.; Wik, T. Charging Pattern Optimization for Lithium-Ion Batteries With an Electrothermal-Aging Model. IEEE Trans. Ind. Inform. 2018, 14, 5463–5474spa
dcterms.bibliographicCitationOuyang, Q.; Wang, Z.; Liu, K.; Xu, G.; Li, Y. Optimal Charging Control for Lithium-Ion Battery Packs: A Distributed Average Tracking Approach. IEEE Trans. Ind. Inform. 2020, 16, 3430–3438spa
dcterms.bibliographicCitationLiu, K.; Hu, X.; Yang, Z.; Xie, Y.; Feng, S. Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation. Energy Convers. Manag. 2019, 195, 167–179spa
dcterms.bibliographicCitationSoroudi, A. Power System Optimization Modeling in GAMS, 1st ed.; Springer International Publishing: Cham, Switzerland, 2017.spa
dcterms.bibliographicCitationMontoya, O.D.; Serra, F.M.; Angelo, C.H.D. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 2020, 9, 1352.spa
dcterms.bibliographicCitationSimiyu, P.; Xin, A.; Wang, K.; Adwek, G.; Salman, S. Multiterminal Medium Voltage DC Distribution Network Hierarchical Control. Electronics 2020, 9, 506spa
dcterms.bibliographicCitationAndrei, N. Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology; Springer International Publishing: Cham, Switzerland, 2017.spa
dcterms.bibliographicCitationChung, C.P.; Lee, C.F. Parameters Decision on the Product Characteristics of a Bike Frame. Procedia Soc. Behav. Sci. 2012, 40, 107–115.spa
dcterms.bibliographicCitationBocanegra, S.Y.; Montoya, O.D.; Molina-Cabrera, A. Estimación de parámetros en transformadores monofásicos empleando medidas de tensión y corriente. Rev. Uis Ing. 2020, 19, 63–75.spa
dcterms.bibliographicCitationPorkar, S.; Abbaspour-Tehrani-fard, A.; Poure, P.; Saadate, S. Distribution system planning considering integration of distributed generation and load curtailment options in a competitive electricity market. Electr. Eng. 2010, 93, 23–32spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Eng. J. 2019spa
dcterms.bibliographicCitationKrone, D.; Esche, E.; Asprion, N.; Skiborowski, M.; Repke, J.U. Conceptual Design Based on Superstructure Optimization in GAMS with Accurate Thermodynamic Models. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–20.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Rivas-Trujillo, E. Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids. Energies 2020, 13, 2289.spa
dcterms.bibliographicCitationNaghiloo, A.; Abbaspour, M.; Mohammadi-Ivatloo, B.; Bakhtari, K. GAMS based approach for optimal design and sizing of a pressure retarded osmosis power plant in Bahmanshir river of Iran. Renew. Sustain. Energy Rev. 2015, 52, 1559–1565spa
dcterms.bibliographicCitationTIN-LOI, F. Plastic limit analysis problems, mathematical programming and GAMS. Eng. Optim. 1993, 20, 273–286.spa
dcterms.bibliographicCitationLiu, K.; Hu, X.; Wei, Z.; Li, Y.; Jiang, Y. Modified Gaussian Process Regression Models for Cyclic Capacity Prediction of Lithium-Ion Batteries. IEEE Trans. Transp. Electrif. 2019, 5, 1225–1236.spa
dcterms.bibliographicCitationLiu, K.; Shang, Y.; Ouyang, Q.; Widanage, W.D. A Data-driven Approach with Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery. IEEE Trans. Ind. Electron. 2020, 1.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710.spa
dcterms.bibliographicCitation. Montoya, O.D.; Gil-González, W.; Serra, F.M.; Hernández, J.C.; Molina-Cabrera, A. A Second-Order Cone Programming Reformulation of the Economic Dispatch Problem of BESS for Apparent Power Compensation in AC Distribution Networks. Electronics 2020, 9, 1677.spa
dcterms.bibliographicCitationGrisales-Noreña, L.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488.spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8.spa
dcterms.bibliographicCitationAlzahrani, A.; Shamsi, P.; Dagli, C.; Ferdowsi, M. Solar Irradiance Forecasting Using Deep Neural Networks. Procedia Comput. Sci. 2017, 114, 304–313.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2079-9292/9/12/2097
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/electronics9122097
dc.subject.keywordsBattery energy storage systemsspa
dc.subject.keywordsRural distribution networksspa
dc.subject.keywordsGreenhouse gas emissionsspa
dc.subject.keywordsOptimization problemspa
dc.subject.keywordsDiesel generationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.eissn2079-9292
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.