Mostrar el registro sencillo del ítem
Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer
dc.contributor.author | Garzón Rivera O.D. | |
dc.contributor.author | Ocampo, J.A | |
dc.contributor.author | Grisales-Noreña, Luis Fernando | |
dc.contributor.author | Montoya, O.D | |
dc.contributor.author | Rojas-Montano, J.J. | |
dc.date.accessioned | 2021-02-15T16:13:11Z | |
dc.date.available | 2021-02-15T16:13:11Z | |
dc.date.issued | 2020-10-06 | |
dc.date.submitted | 2021-02-12 | |
dc.identifier.citation | Garzon-Rivera, O., Ocampo, J., Grisales-Norena, L., Montoya, O., & Rojas-Montano, J. (2020). Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer. Statistics, Optimization & Information Computing, 8(4), 846-857. https://doi.org/10.19139/soic-2310-5070-1022 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9998 | |
dc.description.abstract | This document presents a solution method for optimal power flow (OPF) problem in direct current (DC) networks by implementing a master-slave optimization methodology that combines an antlion optimizer (ALO) and a power flow approach based on successive approximation (SA ). In the master stage, the ALO determines the optimal amount of power to be delivered by all the distributed generators (DGs) in order to minimize the total power losses in the distribution lines of the DC network. In slave stage, the power flow problem is solved considering constant power loads and power outputs of DGs as constants. To validate the effectiveness and robustness of the proposed model, two additional comparative methods were implemented: particle swarm optimization (PSO) and black hole optimization (BHO). Two distribution test feeders (21 and 69 nodes) were simulated under different scenarios of distributed power generation. The simulations, conducted in MATLAB 2018$b$, show that the proposed method (ALO) presents a better balance between power loss minimization and computational time required to find the optimal solution regardless of the size of the DC network. | spa |
dc.format.extent | 12 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Statistics, Optimization & Information Computing Vol 8 No 4 (2020) | spa |
dc.title | Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer | spa |
dcterms.bibliographicCitation | W. LI, Y. GU, H. YANG, W. SUN, Y. CHI and X. HE Hierarchical control of DC microgrids combining robustness and smartness. 2019 CSEE Journal of Power and Energy Systems, pp.1-10. ISSN 2096-0042. DOI:10.17775/CSEEJPES.2017.00920. | spa |
dcterms.bibliographicCitation | MANRIQUE, MAR´IA LOURDES, MONTOYA, OSCAR DANILO, GARRIDO, V´ICTOR MANUEL, GRISALES-NORENA˜ LUIS FERNANDO and GIL-GONZALEZ ´ , WALTER Sine-Cosine Algorithm for OPF Analysis in Distribution Systems to Size Distributed Generators. Springer International Publishing. 2019, vol.119, pp.28–39. WEA 2019. DOI:10.1007/978-3-030-31019-63. | spa |
dcterms.bibliographicCitation | Z. CHEN, K. WANG, Z. LI and T. ZHENG. A review on control strategies of AC/DC micro grid. 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), pp.1-6. DOI:10.1109/EEEIC.2017.7977807. | spa |
dcterms.bibliographicCitation | OMAR ELLABBAN, HAITHAM ABU-RUB and FREDE BLAABJERG. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews. 2014, vol.39, pp. 748-764. ISSN 1364-0321. DOI:10.1016/j.rser.2014.07.113. | spa |
dcterms.bibliographicCitation | W. INAM, J. A. BELK, K. TURITSYN and D. J. PERREAULT. Stability, control, and power flow in ad hoc DC microgrids. 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), pp.1-8. DOI:10.1109/COMPEL.2016.7556704. | spa |
dcterms.bibliographicCitation | MONTOYA, O. D., W. GIL-GONZALEZ and . F. GRISALES-NORENA. Optimal Power Dispatch of DGs in DC Power Grids: a Hybrid Gauss-Seidel-Genetic-Algorithm Methodology for Solving the OPF Problem. WSEAS Transactions on Power Systems. 2018, vol. 13, no. 33, pp. 335–346.ISSN 2224-350X. | spa |
dcterms.bibliographicCitation | GARCES, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electric Power Systems Research. 2017, vol. 151, no. 1, pp. 149–153. ISSN 0378-7796. DOI: 10.1016/j.epsr.2017.05.031. | spa |
dcterms.bibliographicCitation | GARCES, A. On Convergence of Newtons Method in Power Flow Study for DC Microgrids. IEEE Transactions on Power Systems. 2018, vol. 33, no. 5, pp. 5770–5777. ISSN 0885-8950. DOI:10.1109/TPWRS.2018.2820430. | spa |
dcterms.bibliographicCitation | MONTOYA, O. D., L. F. GRISALES-NORENA, D. GONZALEZ-MONTOYA, C. RAMOSPAJA and A. GARCES. Linear power flow formulation for low-voltage DC power grids. Electric Power Systems Research. 2018, vol.163, pp. 375–381. ISSN 0378- 7796. DOI:10.1016/j.epsr.2018.07.003. | spa |
dcterms.bibliographicCitation | O. D. MONTOYA AND V. M. GARRIDO AND W. GIL-GONZALEZ ´ and L. GRISALES-NORENA˜ . Power Flow Analysis in DC Grids: Two Alternative Numerical Methods. IEEE Transactions on Circuits and Systems II: Express Briefs. 2019, pp 1-1. ISSN 1549-7747. DOI: 10.1109/TCSII.2019.2891640. | spa |
dcterms.bibliographicCitation | D. E. OLIVARES, A. MEHRIZI-SANI, A. H. ETEMADI, C. A. CANIZARES AND ˜ R. IRAVANI AND M. KAZERANI, A. H. HAJIMIRAGHA, O. GOMIS-BELLMUNT, M. SAEEDIFARD AND R. PALMA-BEHNKE AND G. A. JIMENEZ ´ -ESTEVEZ ´ and N. D. HATZIARGYRIOU. Trends in Microgrid Control. IEEE Transactions on Smart Grid. 2014, vol.5, no.4, pp 1905-1919. ISSN1949-3053. DOI: 10.1109/TSG.2013.2295514. | spa |
dcterms.bibliographicCitation | LI, J., F. LIU, Z. WANG, S. LOW and S. MEI. Optimal Power Flow in Stand-alone DC Microgrids. IEEE Transactions on Power Systems. 2018, vol.33, no.5, pp.5496–5506. ISSN 0885-8950. DOI: 10.1109/TPWRS.2018.2801280. | spa |
dcterms.bibliographicCitation | GIL-GONZALEZ, W., O. D. MONTOYA, E. HOLGUIN, A. GARCES and L. F. GRISALES-NORENA. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. Journal of Energy Storage. 2019, vol.21, no.1, pp.1–8. ISSN 2352-152X. DOI: 10.1016/j.est.2018.10.025. | spa |
dcterms.bibliographicCitation | MONTOYA, O. D., W. GIL-GONZALEZ and A. GARCES. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation. IEEE Transactions on Circuits and Systems II: Express Briefs. 2018, vol. 99, no. 1, pp. 1–1. ISSN 1549-7747. DOI: 10.1109/TCSII.2018.2871432. | spa |
dcterms.bibliographicCitation | VELASQUEZ, ORFILIO AND MONTOYA O.D,MANUEL GARRIDO AREVALO V, and GRISALES-NORENA˜ , LUIS. Optimal Power Flow in Direct-Current Power Grids via Black Hole Optimization. Advances in Electrical and Electronic Engineering. 2019, vol. 34, no. 1, pp. 66 - 74. ISSN 0142-0615. DOI: 10.1016/j.ijepes.2011.08.02. | spa |
dcterms.bibliographicCitation | GRISALES-NORENA, L. F., D. G. MONTOYA and C. A. RAMOS-PAJA. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies. 2018, vol. 11, no. 1018, pp. 1–27. ISSN 1996-1073. DOI: 10.3390/en11041018. | spa |
dcterms.bibliographicCitation | ALGULIYEV, RASIM M. AND ALIGULIYEV, RAMIZ M. AND ABDULLAYEVA, FARGANA J. PSO+K-means Algorithm for Anomaly Detection in Big Data. STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING. 2019, vol. 7, no. 2, pp. 348-359. ISSN 2310-5070. DOI:10.19139/soic.v7i2.623. | spa |
dcterms.bibliographicCitation | M.A RODRIGUEZ, L.F GRISALES, J.G ARDILA, O.D MONTOYA Optimal Design of Transmission Shafts: a Continuous Genetic Algorithm Approach. STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING. 2019, vol. 7, pp. 802-815. ISSN 2310- 5070. DOI:10.19139/soic-2310-5070-641 | spa |
dcterms.bibliographicCitation | O KOSTYUKOVA, T TCHEMISOVA, M KURDINA On Optimal Properties of Special Nonlinear and Semi-infinite Problems Arising in Parametric Optimization . STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING. 2017, vol. 5, pp. 99-108. ISSN 2310-5070. DOI:10.19139/soic.v5i2.303 | spa |
dcterms.bibliographicCitation | E.S. ALI, S.M. ABD ELAZIM and A.Y. ABDELAZIZ. Ant Lion Optimization Algorithm for Renewable Distributed Generations. Energy. 2016, vol. 116, pp. 445-458. ISSN 0360-5442. DOI:10.1016/j.energy.2016.09.104. | spa |
dcterms.bibliographicCitation | YANG, XIN-SHE. Nature-Inspired Metaheuristic Algorithms. Advances in Engineering Software. 2010. | spa |
dcterms.bibliographicCitation | ESEYEDALI MIRJALILI. The Ant Lion Optimizer. Advances in Engineering Software. 2015, vol.83, pp. 80 - 98. ISSN 0965-9978. DOI:10.1016/j.advengsoft.2015.01.010. | spa |
dcterms.bibliographicCitation | MOHAMMAD JAFAR HADIDIAN-MOGHADDAM, SABER ARABI-NOWDEH, MEHDI BIGDELI and DAVOOD AZIZIAN. A multiobjective optimal sizing and siting of distributed generation using ant lion optimization technique. Ain Shams Engineering Journal. 2018, vol.9, no.14, pp.2101-2109. ISSN 2090-4479. DOI: 10.1016/j.asej.2017.03.001. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | http://www.iapress.org/index.php/soic/article/view/1022 | |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.19139/soic-2310-5070-1022 | |
dc.subject.keywords | Antlion optimization | spa |
dc.subject.keywords | Direct current microgrids | spa |
dc.subject.keywords | Metaheuristic optimization methods | spa |
dc.subject.keywords | Optimal power flow analysis | spa |
dc.subject.keywords | Power flow | spa |
dc.subject.keywords | Successive approximation | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.