Mostrar el registro sencillo del ítem

dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorRamos-Paja, Carlos Andrés
dc.contributor.authorHernandez-Escobedo, Quetzalcoatl
dc.contributor.authorPerea-Moreno, Alberto-Jesus
dc.date.accessioned2021-02-15T16:09:59Z
dc.date.available2021-02-15T16:09:59Z
dc.date.issued2020-11-01
dc.date.submitted2021-02-12
dc.identifier.citationGrisales-Noreña, Luis F.; Montoya, Oscar D.; Ramos-Paja, Carlos A.; Hernandez-Escobedo, Quetzalcoatl; Perea-Moreno, Alberto-Jesus. 2020. "Optimal Location and Sizing of Distributed Generators in DC Networks Using a Hybrid Method Based on Parallel PBIL and PSO" Electronics 9, no. 11: 1808. https://doi.org/10.3390/electronics9111808spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9996
dc.description.abstractThis paper addresses the problem of the locating and sizing of distributed generators (DGs) in direct current (DC) grids and proposes a hybrid methodology based on a parallel version of the Population-Based Incremental Learning (PPBIL) algorithm and the Particle Swarm Optimization (PSO) method. The objective function of the method is based on the reduction of the power loss by using a master-slave structure and the consideration of the set of restrictions associated with DC grids in a distributed generation environment. In such a structure, the master stage (PPBIL) finds the location of the generators and the slave stage (PSO) finds the corresponding sizes. For the purpose of comparison, eight additional hybrid methods were formed by using two additional location methods and two additional sizing methods, and this helped in the evaluation of the effectiveness of the proposed solution. Such an evaluation is illustrated with the electrical test systems composed of 10, 21 and 69 buses and simulated on the software, MATLAB. Finally, the results of the simulation demonstrated that the PPBIL–PSO method obtains the best balance between the reduction of power loss and the processing time.spa
dc.format.extent27 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics 2020, 9(11), 1808spa
dc.titleOptimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and psospa
dcterms.bibliographicCitationSchonbergerschonberger, J.; Duke, R.; Round, S.D. DC-Bus Signaling: A Distributed Control Strategy for a Hybrid Renewable Nanogrid. IEEE Trans. Ind. Electron. 2006, 53, 1453–1460. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A. Optimal power flow on DC microgrids: A quadratic convex Approximation. IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 1018–1022. [CrossRef]spa
dcterms.bibliographicCitationGavriluta, C.; Candela, I.; Citro, C.; Luna, A.; Rodriguez, P. Design considerations for primary control in multi-terminal VSC-HVDC grids. Electr. Power Syst. Res. 2015, 122, 33–41. [CrossRef]spa
dcterms.bibliographicCitationNordin, N.D.; Rahman, H.A. Comparison of optimum design, sizing, and economic analysis of standalone photovoltaic/battery without and with hydrogen production systems. Renew. Energy 2019, 141, 107–123. [CrossRef]spa
dcterms.bibliographicCitationMatayoshi, H.; Kinjo, M.; Rangarajan, S.S.; Ramanathan, G.G.; Hemeida, A.M.; Senjyu, T. Islanding operation scheme for DC microgrid utilizing pseudo Droop control of photovoltaic system. Energy Sustain. Dev. 2020, 55, 95–104. [CrossRef]spa
dcterms.bibliographicCitationWu, Y.; Huangfu, Y.; Ma, R.; Ravey, A.; Chrenko, D. A strong robust DC-DC converter of all-digital high-order sliding mode control for fuel cell power applications. J. Power Sources 2019, 413, 222–232. [CrossRef]spa
dcterms.bibliographicCitationHaseltalab, A.; Botto, M.A.; Negenborn, R.R. Model Predictive DC Voltage Control for all-electric ships. Control Eng. Pract. 2019, 90, 133–147. [CrossRef]spa
dcterms.bibliographicCitationGarces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D. On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs. IEEE Trans. Circuits Syst. II 2019, 66, 2032–2036. [CrossRef]spa
dcterms.bibliographicCitationGarcés, A. On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Grisales-Noreña, L.F.; González-Montoya, D.; Ramos-Paja, C.; Garces, A. Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 2018, 163, 375–381. [CrossRef]spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. [CrossRef]spa
dcterms.bibliographicCitationLi, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods. IEEE Trans. Circuits Syst. II 2019, 66, 1865–1869. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids. Electr. Power Syst. Res. 2019, 169, 18–23. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Grisales-nore, L.F. Optimal power dispatch of DGs in DC power grids: A hybrid Gauss-Seidel-Genetic-Algorithm methodology for solving the OPF problem. WSEAS Trans. Power Syst. 2018, 13, 335–346.spa
dcterms.bibliographicCitationWang, P.; Zhang, L.; Xu, D. Optimal Sizing of Distributed Generations in DC Microgrids with Lifespan Estimated Model of Batteries. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea, 7–10 October 2018; pp. 2045–2049. [CrossRef]spa
dcterms.bibliographicCitationNasir, M.; Iqbal, S.; Khan, H.A. Optimal Planning and Design of Low-Voltage Low-Power Solar DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 2919–2928. [CrossRef]spa
dcterms.bibliographicCitationKirkegaard, P.; Grohnheit, P. LINPROG—A Linear Programming Solver. Mathematical Description and Model Applications; Forskningscenter Riso: Roskilde, Denmark, 1995.spa
dcterms.bibliographicCitationWang, P.; Wang, W.; Xu, D. Optimal Sizing of Distributed Generations in DC Microgrids with Comprehensive Consideration of System Operation Modes and Operation Targets. IEEE Access 2018, 6, 31129–31140. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. A MIQP Model for Optimal Location and Sizing of Dispatchable DGs in DC Networks. 2020. Available online: https://link.springer.com/article/10.1007%2Fs12667-020-00403-x (accessed on 30 August 2020).spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L. Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches. Int. J. Electr. Power Energy Syst. 2020, 115, 105442. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks. Eng. Sci. Technol. Int. J. 2020, 23, 527–533. [CrossRef]spa
dcterms.bibliographicCitationSultana, S.; Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system. Appl. Soft Comput. 2016, 40, 391–404. [CrossRef]spa
dcterms.bibliographicCitationKumar, B.V.; Srikanth, N. A hybrid approach for optimal location and capacity of UPFC to improve the dynamic stability of the power system. Appl. Soft Comput. 2017, 52, 974–986. [CrossRef]spa
dcterms.bibliographicCitationTeimourzadeh, H.; Mohammadi-Ivatloo, B. A three-dimensional group search optimization approach for simultaneous planning of distributed generation units and distribution network reconfiguration. Appl. Soft Comput. 2020, 88, 106012. [CrossRef]spa
dcterms.bibliographicCitationAwad, N.H.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N. An efficient Differential Evolution algorithm for stochastic OPF based active–reactive power dispatch problem considering renewable generators. Appl. Soft Comput. 2019, 76, 445–458. [CrossRef]spa
dcterms.bibliographicCitationMoradi, M.; Abedini, M.A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74. [CrossRef]spa
dcterms.bibliographicCitationSelim, A.; Kamel, S.; Jurado, F. Efficient optimization technique for multiple DG allocation in distribution networks. Appl. Soft Comput. 2020, 86, 105938. [CrossRef]spa
dcterms.bibliographicCitationJain, N.; Singh, S.; Srivastava, S. PSO based placement of multiple wind DGs and capacitors utilizing probabilistic load flow model. Swarm Evol. Comput. 2014, 19, 15–24. [CrossRef]spa
dcterms.bibliographicCitationLeonori, S.; Paschero, M.; Mascioli, F.M.F.; Rizzi, A. Optimization strategies for Microgrid energy management systems by Genetic Algorithms. Appl. Soft Comput. 2020, 86, 105903. [CrossRef]spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Gonzalez Montoya, D.; Ramos-Paja, C.A. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies 2018, 11, 1018. [CrossRef]spa
dcterms.bibliographicCitationMartinez, J.A.; Guerra, G. A Parallel Monte Carlo Method for Optimum Allocation of Distributed Generation. IEEE Trans. Power Syst. 2014, 29, 2926–2933. [CrossRef]spa
dcterms.bibliographicCitationAbdelaziz, M.; Moradzadeh, M. Monte-Carlo simulation based multi-objective optimum allocation of renewable distributed generation using OpenCL. Electr. Power Syst. Res. 2019, 170, 81–91. [CrossRef]spa
dcterms.bibliographicCitationDo ˘gan¸sahin, K.; Kekezo ˘glu, B.; Yumurtacı, R.; Erdinç, O.; Catalão, J.A.P.S. Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads. Energies 2018, 11, 255. [CrossRef]spa
dcterms.bibliographicCitationRastegar, R. On the Optimal Convergence Probability of Univariate Estimation of Distribution Algorithms. Evol. Comput. 2011, 19, 225–248. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationRousis, A.O.; Konstantelos, I.; Strbac, G. A Planning Model for a Hybrid AC–DC Microgrid Using a Novel GA/AC OPF Algorithm. IEEE Trans. Power Syst. 2020, 35, 227–237. [CrossRef]spa
dcterms.bibliographicCitationGanguly, S.; Samajpati, D. Distributed Generation Allocation on Radial Distribution Networks Under Uncertainties of Load and Generation Using Genetic Algorithm. IEEE Trans. Sustain. Energy 2015, 6, 688–697. [CrossRef]spa
dcterms.bibliographicCitationZaroni, H.; Maciel, L.B.; Carvalho, D.B.; de O. Pamplona, E. Monte Carlo Simulation approach for economic risk analysis of an emergency energy generation system. Energy 2019, 172, 498–508. [CrossRef]spa
dcterms.bibliographicCitationHasan, Z.; El-Hawary, M.E. Optimal Power Flow by Black Hole Optimization Algorithm. In Proceedings of the 2014 IEEE Electrical Power and Energy Conference, Calgary, AB, Canada, 12–14 November 2014; pp. 134–141. [CrossRef]spa
dcterms.bibliographicCitationKowsalya, M. Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization. Swarm Evol. Comput. 2014, 15, 58–65spa
dcterms.bibliographicCitationHA, M.P.; Huy, P.D.; Ramachandaramurthy, V.K. A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms. Renew. Sustain. Energy Rev. 2017, 75, 293–312spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Garzon-Rivera, O.D.; Montoya, O.D.; Ramos-Paja, C.A. Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks. In Workshop on Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 214–225.spa
dcterms.bibliographicCitationGrisales, L.F.; Grajales, A.; Montoya, O.D.; Hincapié, R.A.; Granada, M. Optimal location and sizing of Distributed Generators using a hybrid methodology and considering different technologies. In Proceedings of the 2015 IEEE 6th Latin American Symposium on Circuits Systems (LASCAS), Montevideo, Uruguay, 24–27 February 2015; pp. 1–4. [CrossRef]spa
dcterms.bibliographicCitationBaluja, S. Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning; School of Computer Science, Carnegie Mellon University: Pittsburgh, PA, USA, 1994; pp. 1–41.spa
dcterms.bibliographicCitationXu, Z.; Wang, Y.; Li, S.; Liu, Y.; Todo, Y.; Gao, S. Immune algorithm combined with estimation of distribution for traveling salesman problem. IEEJ Trans. Electr. Electron. Eng. 2016, 11, S142–S154. [CrossRef]spa
dcterms.bibliographicCitationCeberio, J.; Irurozki, E.; Mendiburu, A.; Lozano, J.A. A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems. Prog. Artif. Intell. 2012, 1, 103–117. [CrossRef]spa
dcterms.bibliographicCitationLarrañaga, P.; Karshenas, H.; Bielza, C.; Santana, R. A review on probabilistic graphical models in evolutionary computation. J. Heuristics 2012, 18, 795–819. [CrossRef]spa
dcterms.bibliographicCitationBolanos, F.; Aedo, J.E.; Rivera, F. Comparison of Learning Rules for Adaptive Population-Based Incremental Learning Algorithms. Available online: http://worldcomp-proceedings.com/proc/p2012/ICA3716.pdf (accessed on 29 October 2020).spa
dcterms.bibliographicCitationRinaldi, P.; Dari, E.; Vénere, M.; Clausse, A. A Lattice-Boltzmann solver for 3D fluid simulation on GPU. Simul. Model. Pract. Theory 2012, 25, 163–171. [CrossRef]spa
dcterms.bibliographicCitationLukaˇc, N.; Žalik, B. GPU-based roofs’ solar potential estimation using LiDAR data. Comput. Geosci. 2013, 52, 34–41. [CrossRef]spa
dcterms.bibliographicCitationKennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [CrossRef]spa
dcterms.bibliographicCitationDaud, S.; Kadir, A.; Gan, C.; Mohamed, A.; Khatib, T. A comparison of heuristic optimization techniques for optimal placement and sizing of photovoltaic based distributed generation in a distribution system. Sol. Energy 2016, 140, 219–226. [CrossRef]spa
dcterms.bibliographicCitationAcharya, N.; Mahat, P.; Mithulananthan, N. An analytical approach for DG allocation in primary distribution network. Int. J. Electr. Power Energy Syst. 2006, 28, 669–678. [CrossRef]spa
dcterms.bibliographicCitationAli, E.; Elazim, S.A.; Abdelaziz, A. Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations. Renew. Energy 2017, 101, 1311–1324. [CrossRef]spa
dcterms.bibliographicCitationSaha, S.; Mukherjee, V. Optimal placement and sizing of DGs in RDS using chaos embedded SOS algorithm. IET Gener. Transm. Distrib. 2016, 10, 3671–3680. [CrossRef]spa
dcterms.bibliographicCitationKumawat, M.; Gupta, N.; Jain, N.; Bansal, R. Optimal planning of distributed energy resources in harmonics polluted distribution system. Swarm Evol. Comput. 2018, 39, 99–113. [CrossRef]spa
dcterms.bibliographicCitationGrisales, L.F.; Montoya, O.D.; Grajales, A.; Hincapie, R.A.; Granada, M. Optimal Planning and Operation of Distribution Systems Considering Distributed Energy Resources and Automatic Reclosers. IEEE Lat. Am. Trans. 2018, 16, 126–134. [CrossRef]spa
dcterms.bibliographicCitationGeorgilakis, P.S.; Hatziargyriou, N.D. Optimal Distributed Generation Placement in Power Distribution Networks: Models, Methods, and Future Research. IEEE Trans. Power Syst. 2013, 28, 3420–3428. [CrossRef]spa
dcterms.bibliographicCitationBouchekara, H. Optimal power flow using black-hole-based optimization approach. Appl. Soft Comput. 2014, 24, 879–888. [CrossRef]spa
dcterms.bibliographicCitationVelasquez, O.; Giraldo, O.M.; Arevalo, V.G.; Norena, L.G. Optimal Power Flow in Direct-Current Power Grids via Black Hole Optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32. [CrossRef]spa
dcterms.bibliographicCitationDogan, B.; Olmez, T. Vortex search algorithm for the analog active filter component selection problem. AEU-Int. J. Electron. Commun. 2015, 69, 1243–1253. [CrossRef]spa
dcterms.bibliographicCitationLi, Z.; Cao, Y.; Dai, L.V.; Yang, X.; Nguyen, T.T. Optimal Power Flow for Transmission Power Networks Using a Novel Metaheuristic Algorithm. Energies 2019, 12, 4310. [CrossRef]spa
dcterms.bibliographicCitationNordman, B.; Christensen, K. DC Local Power Distribution: Technology, Deployment, and Pathways to Success. IEEE Electrif. Mag. 2016, 4, 29–36. [CrossRef]spa
dcterms.bibliographicCitationNaik, S.G.; Khatod, D.; Sharma, M. Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks.Int. J. Electr. Power Energy Syst. 2013, 53, 967–973. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2079-9292/9/11/1808
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/electronics9111808
dc.subject.keywordsDirect current gridsspa
dc.subject.keywordsDistributed generationspa
dc.subject.keywordsCombinatorial optimizationspa
dc.subject.keywordsParallel processing toolspa
dc.subject.keywordsOptimal power flow analysisspa
dc.subject.keywordsPower loss reductionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.eissn2079-9292
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.