Mostrar el registro sencillo del ítem

dc.contributor.authorPaternina, C.
dc.contributor.authorArnedo, R.
dc.contributor.authorDomínguez Jiménez, Juan Antonio
dc.contributor.authorCampillo Jiménez, Javier Eduardo
dc.date.accessioned2021-02-15T15:53:56Z
dc.date.available2021-02-15T15:53:56Z
dc.date.issued2020-12-01
dc.date.submitted2021-02-12
dc.identifier.citationC. Paternina, R. Arnedo, J. A. Dominguez-Jimenez and J. Campillo, "LoRAWAN Network Coverage Testing Design using Open-source Low-Cost Hardware," 2020 IEEE ANDESCON, Quito, Ecuador, 2020, pp. 1-6, doi: 10.1109/ANDESCON50619.2020.9272128.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9993
dc.description.abstractThe Internet of Things (IoT) is considered to be one of the most radical technological advances of the century. The increasing amount of applications and devices, requires the deployment of a large network infrastructure to provide with reliable communication. However, existing communication technologies could be energy demanding and not suitable for applications where a constant energy supply is not available (e.g. battery-powered sensors). Low-Power Wide Area Network (LPWAN) communication technologies appear to fill in this gap, with LoRaWAN as one of the most popular ones, given its low cost of implementation, reliability and coverage. Operating on the frequency band below 1GHz, it is possible to cover larger areas than more mature technologies, such as the IEEE802.11x (Wifi) standard. The aim of this work is to present a low-cost open-source based technical solution and measurement procedure for determining the network coverage of a LoRaWAN network, in dense urban environments. By measuring connection link quality parameters, it was possible to establish a testing methodology to determining the operational coverage of the network implemented. Obtained results show an average coverage between 7 and 10 km per gateway and that the most outstanding combination of spreading factor and coding rate was SF10-CR4. This study offers great insights for proper planning and validation of LoRaWAN based IoT networks.spa
dc.format.extent6 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.source2020 IEEE ANDESCONspa
dc.titleLoRAWAN network coverage testing design using open-source low-cost hardwarespa
dcterms.bibliographicCitationM. Alenezi, K. K. Chai, Y. Chen and S. Jimaa, "Ultra-dense LoRaWAN: Reviews and challenges", IET Communications, vol. 14, no. 9, pp. 1361-1371, Jun. 2020, [online] Available: https://digital-library.theiet.org/content/journals/10.1049/iet-com.2018.6128.spa
dcterms.bibliographicCitationH. Espinoza, G. Kling, F. McGroarty, M. O’Mahony and X. Ziouvelou, "Estimating the impact of the Internet of Things on productivity in Eu-rope", Heliyon, vol. 6, no. 5, pp. e03935, May 2020, [online] Available: https://linkinghub.elsevier.com/retrieve/pii/S2405844020307805.spa
dcterms.bibliographicCitationA. Zourmand, A. L. Kun Hing, C. Wai Hung and M. AbdulRehman, "Internet of Things (IoT) using LoRa technology", 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), pp. 324-330, Jun. 2019, [online] Available: https://ieeexplore.ieee.org/document/8825008/.spa
dcterms.bibliographicCitationN. S. Knyazev, V. A. Chechetkin and D. A. Letavin, "Comparative analysis of standards for Low-power Wide-area Network", 2017 Systems of Signal Synchronization Generating and Processing in Telecommunications (SINKHROINFO), pp. 1-4, Jul. 2017, [online] Available: http://ieeexplore.ieee.org/document/7997528/.spa
dcterms.bibliographicCitationL. Slats, "A Brief History of LoRa®: Three Inventors Share Their Personal Story at The Things Conference", Jan. 2020, [online] Available: https://blog.semtech.com/a-brief-history-of-lora-three-inventors-share-their-personal-story-at-the-things-conference.spa
dcterms.bibliographicCitationF. J. Grion, G. O. Petracca, D. F. Lipuma and E. R. Amigo, "LoRa network coverage evaluation in urban and densely urban enviroment simulation and validation tests in Autonomous City of Buenos Aires", 2017 XVII Workshop on Information Processing and Control (RPIC), pp. 1-5, Sep. 2017, [online] Available: http://ieeexplore.ieee.org/document/8214345/.spa
dcterms.bibliographicCitationM. R. Seye, B. Gueye and M. Diallo, "An evaluation of lora coverage in dakar peninsula", 2017 8th IEEE Annual Information Technology Electronics and Mobile Communication Conference (IEMCON), pp. 478-482, 2017.spa
dcterms.bibliographicCitationG. D. Campo, I. Gomez, S. Calatrava, R. Martinez and A. Santamaria, "Power distribution monitoring using lora: coverage analysis in sub-urban areas", Proceedings of the 2018 International Conference on Embedded Wireless Systems and Networks, pp. 233-238, 2018.spa
dcterms.bibliographicCitationS. Sagir, I. Kaya, C. Sisman, Y. Baltaci and S. Unal, "Evaluation of Low-Power Long Distance Radio Communication in Urban Areas: LoRa and Impact of Spreading Factor", 2019 Seventh International Conference on Digital Information Processing and Communications (ICDIPC), pp. 68-71, May 2019, [online] Available: https://ieeexplore.ieee.org/document/8723666/.spa
dcterms.bibliographicCitationR. Sanchez-Iborra, J. Sanchez-Gomez, J. Ballesta-Viñas, M.-D. Cano and A. Skarmeta, "Performance Evaluation of LoRa Considering Scenario Conditions", Sensors, vol. 18, no. 3, pp. 772, Mar. 2018, [online] Available: http://www.mdpi.com/1424-8220/18/3/772.spa
dcterms.bibliographicCitationL. Li, J. Ren and Q. Zhu, "On the application of lora lpwan technology in sailing monitoring system", 2017 13th Annual Conference on Wireless On-demand Network Systems and Services (WONS), pp. 77-80, 2017.spa
dcterms.bibliographicCitationM. J. Covington and R. Carskadden, "Threat implications of the internet of things", 2013 5th International Conference on Cyber Conflict (CYCON 2013), pp. 1-12, 2013.spa
dcterms.bibliographicCitationY. Sui, I. Guvenc and T. Svensson, "Interference management for moving networks in ultra-dense urban scenarios", EURASIP Journal on Wireless Communications and Networking, vol. 2015, no. 1, pp. 111, 2015.spa
dcterms.bibliographicCitationA. Pyattaev, K. Johnsson, S. Andreev and Y. Koucheryavy, "Commu-nication challenges in high-density deployments of wearable wireless devices", IEEE Wireless Communications, vol. 22, no. 1, pp. 12-18, 2015.spa
dcterms.bibliographicCitationL. Kolobe, B. Sigweni and C. K. Lebekwe, "Systematic literature survey: applications of lora communication", International Journal of Electrical & Computer Engineering (2088-8708), vol. 10, 2020.spa
dcterms.bibliographicCitationA. Pitì, G. Verticale, C. Rottondi, A. Capone and L. Lo Schiavo, "The role of smart meters in enabling real-time energy services for households: The italian case", Energies, vol. 10, no. 2, pp. 199, 2017.spa
dcterms.bibliographicCitationT. T. Nguyen, H. H. Nguyen, R. Barton and P. Grossetete, "Efficient Design of Chirp Spread Spectrum Modulation for Low-Power Wide-Area Networks", IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9503-9515, Dec. 2019, [online] Available: https://ieeexplore.ieee.org/document/8765617/.spa
dcterms.bibliographicCitationLoRa Alliance, "LoRaWAN® Regional Parameters RP002-1.0.0", 2019.spa
dcterms.bibliographicCitation"CloudRF - Model the future", [online] Available: https://cloudrf.com/.spa
dcterms.bibliographicCitationS. Kasampalis, P. I. Lazaridis, Z. D. Zaharis, A. Bizopoulos and J. Cos-mas, "Comparison of Longley-Rice ITM and ITWOM propagation models for DTV and FM Broadcasting".spa
dcterms.bibliographicCitationN. S. Bezerra, C. Ahlund, S. Saguna and V. A. de Sousa, "Propagation Model Evaluation for LoRaWAN: Planning Tool Versus Real Case Scenario", 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 1-6, Apr. 2019, [online] Available: https://ieeexplore.ieee.org/document/8767299/.spa
dcterms.bibliographicCitation"Geoportal del DANE - Geovisor Análisis Geoespacial del CNPV 2018", [online] Available: https://geoportal.dane.gov.co/geovisores/territorio/analisis-cnpv-2018/?lt=4.646075lg=-74.088605z=18.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9272128
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1109/ANDESCON50619.2020.9272128
dc.subject.keywordsLPWANspa
dc.subject.keywordsLoRaWANspa
dc.subject.keywordsInternet-of-Thingsspa
dc.subject.keywordsSensorsspa
dc.subject.keywordsOpen-Sourcespa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_8544spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.