Mostrar el registro sencillo del ítem
Key Aspects in the design of silicone/graphene-based strain sensors for structural monitoring
dc.contributor.author | Peña-Consuegra, Jorge | |
dc.contributor.author | Useche Vivero, Jairo | |
dc.contributor.author | Pagnola, Marcelo | |
dc.date.accessioned | 2021-02-11T20:02:14Z | |
dc.date.available | 2021-02-11T20:02:14Z | |
dc.date.issued | 2020-12-24 | |
dc.date.submitted | 2021-02-10 | |
dc.identifier.citation | J. Peña-Consuegra, U. V. Jairo and M. Pagnola, "Key Aspects in the design of silicone/graphene-based strain sensors for structural monitoring," 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena de Indias, Colombia, 2020, pp. 1-5, doi: 10.1109/CIIMA50553.2020.9290292. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9990 | |
dc.description.abstract | The graphene as a material used in engineering applications has been on the rise in the last decade due to being a material with interesting electrical and structural properties. This possibility offers a very wide range of technological applications. Among the potential fields of application is in the development of new sensors for structural applications. Recently the combination of graphene with cross-linked polysilicones has been proposed. This compound has interesting electrical and visco-elastic properties that have allowed the development of highly sensitive pressure and strain sensors. For this reason, their use as strain sensors in structures through structural health monitoring systems opens up an interesting field of research. The aim of this work is to study the mechanical behavior, and the characteristics required of graphene / polysicone-based sensors to be applied effectively in structural health monitoring systems. | spa |
dc.format.extent | 5 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA) | spa |
dc.title | Key Aspects in the design of silicone/graphene-based strain sensors for structural monitoring | spa |
dcterms.bibliographicCitation | Warren and B. Eo, "X-ray diffraction study of carbon black", The journal of chemical physics, vol. 2.9, pp. 551-555, 1934. | spa |
dcterms.bibliographicCitation | D. D. L. Chung, "Review: Graphite", J. Mater. Sci., vol. 37, no. 8, pp. 1475-1489, 2002. | spa |
dcterms.bibliographicCitation | S. Basu and P. Bhattacharyya, "Recent developments on graphene and graphene oxide based solid state gas sensors", Sensors Actuators B Chem., vol. 173, pp. 1-21, 2012. | spa |
dcterms.bibliographicCitation | A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, The electronic properties of graphene, vol. 81, no. March, 2007. | spa |
dcterms.bibliographicCitation | C. Berger et al., "Electronic Confinement and Coherence in Patterned Epitaxial Graphene", Science (80)., vol. 312, no. May, pp. 1191-1196, 2006. | spa |
dcterms.bibliographicCitation | A. Reina et al., "Large Area Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition", Nano Lett., 2013. | spa |
dcterms.bibliographicCitation | Z. Y. Xia et al., "The exfoliation of graphene in liquids by electrochemical chemical and sonication-assisted techniques: A nanoscale study", Adv. Funct. Mater, vol. 23, no. 37, pp. 4684-4693, 2013. | spa |
dcterms.bibliographicCitation | K. Simeonidis et al., "Magnetic separation of hematite-coated Fe304 particles used as arsenic adsorbents", Chem. Eng. J., vol. 168, no. 3, pp. 1008-1015, 2011. | spa |
dcterms.bibliographicCitation | M. Myekhlai, B. Munkhbayar, T. Lee, M. R. Tanshen, H. Chung and H. Jeong, "Experimental investigation of the mechanical grinding effect on graphene structure", RSC Adv., vol. 4, no. 5, pp. 2495-2500, 2014. | spa |
dcterms.bibliographicCitation | C. Cosio-Castaneda, R. Martinez-Garcia and L. M. Socolovsky, "Syn-thesis of silanized maghemite nanoparticles onto reduced graphene sheets composites", Solid State Sci., vol. 30, pp. 17-20, 2014. | spa |
dcterms.bibliographicCitation | L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn and R. B. Kaner, "Intercalation and exfoliation routes to graphite nanoplatelets", J. Mater. Chem., vol. 15, no. 9, pp. 974-978, 2005. | spa |
dcterms.bibliographicCitation | W. Ren and H. M. Cheng, "The global growth of graphene", Nat. Nanotechnol., vol. 9, no. 10, pp. 726-730, 2014. | spa |
dcterms.bibliographicCitation | Z. S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang and H. M. Cheng, "Synthesis of high-quality graphene with a pre-determined number of layers", Carbon N. Y., vol. 47, no. 2, pp. 493-499, 2009. | spa |
dcterms.bibliographicCitation | Daniel P. O'Driscoll et al., "Optimising composite viscosity leads to high sensitivity electromechancial sensors", 2D Materials 5.3, 2018. | spa |
dcterms.bibliographicCitation | C. S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou, A. Harvey, C. Backes, Z. Li, M. S. Ferreira, M. E. Mobius et al., "Sensitive electromechanical sensors using viscoelasticgraphene-polymer nanocompos-ites", Science, vol. 354, no. 6317, pp. 1257-1260, 2016. | spa |
dcterms.bibliographicCitation | R. Cross, "Elastic and viscous properties of silly putty", American Journal of Physics, vol. 80, no. 10, pp. 870-875, 2012. | spa |
dcterms.bibliographicCitation | M. Goertz, X.- Y. Zhu and J. Houston, "Temperature dependent relaxation of a solid-liquid", Journal of Polymer Science Part B: Polymer Physics, vol. 47, no. 13, pp. 1285-1290, 2009. | spa |
dcterms.bibliographicCitation | M. Liang and X.-H. Zhang, "Rheological properties of spin shock transmission application", Journal of Materials in Civil Engineering, vol. 27, no. 9, 2014. | spa |
dcterms.bibliographicCitation | Li Qi et al., "Engineering of carbon nanotube/polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors", Journal of Materials Chemistry C 5.42, pp. 11092-11099, 2017. | spa |
dcterms.bibliographicCitation | Wang Xin et al., "Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity", ACS applied materials and interfaces 10.8, pp. 7371-7380, 2018. | spa |
dcterms.bibliographicCitation | Gao Yang et al., "Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites", Nanotechnology 29.23, 2018. | spa |
dcterms.bibliographicCitation | F. Yin, D. Ye, C. Zhu, L. Qiu and Y. Huang, "Stretchable highly durable ternarynanocomposite strain sensor for structural health monitoring of flexible aircraft", Sensors, vol. 17, no. 11, 2017. | spa |
dcterms.bibliographicCitation | Hebert Marie, "A Silicone-based Soft Matrix Nanocomposite Strain-like Sensor Fabricated using Graphene and Silly Putty®", Sensors and Actuators A: Physical, vol. 11, 2020. | spa |
dcterms.bibliographicCitation | S. G. Allen, S. Aggarwal and S. Russo, "Comprehensive polymer science supplement 2", Elsevier Science Limited, 1996. | spa |
dcterms.bibliographicCitation | S. J. Clarson and J. A. Semlyen, Siloxane polymers, Prentice Hall, 1993. | spa |
dcterms.bibliographicCitation | W. Noll, W. Noll et al., Chemistry and technology of silicones, 1968. | spa |
dcterms.bibliographicCitation | R. Saito, G. Dresselhaus and M.S. Dresselhaus, Physical properties of carbon nanotubes, Singapur:Imperial college press, pp. 24-25, 1998. | spa |
dcterms.bibliographicCitation | Andre Geim, "Electrons lose their mass in carbon shests", ature materials (UK), vol. 438, pp. 165-167, 2005. | spa |
dcterms.bibliographicCitation | R. Resnick, D. Halliday and K. S. Krane, Fisica, CECSA, Mexico, 2003. | spa |
dcterms.bibliographicCitation | Mclver James, "Light-induced anomalous Hall effect graphene", Nature physics, vol. 16.1, pp. 38-41, 2020. | spa |
dcterms.bibliographicCitation | M. I. Katsnelson, K. S. Novoselov and A. K. Geim, "Chiral tunnelling and the Klein paradox in graphene", Nature physics, vol. 2.9, pp. 620-625, 2006. | spa |
dcterms.bibliographicCitation | Alshammari Abdullah, "Carbon-based polymer nanocomposites for sensing applications" in Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications, Elsevier, pp. 331-360, 2018. | spa |
dcterms.bibliographicCitation | Lakes Roderic and Roderic S. Lakes, Viscoelastic materials, Cambridge university press, 2014. | spa |
dcterms.bibliographicCitation | Park Chiyoung and Seoung-Ki Lee, "Electrical Adaptiveness and Electromechanical Response in Gel Composites of Carbon N anomaterials", ChemElectroChem, vol. 5.23, pp. 3589-3596, 2018. | spa |
datacite.rights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://ieeexplore.ieee.org/document/9290292 | |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1109/CIIMA50553.2020.9290292 | |
dc.subject.keywords | Silicone | spa |
dc.subject.keywords | Graphene | spa |
dc.subject.keywords | Polydimethylsiloxane | spa |
dc.subject.keywords | Strain sensor | spa |
dc.subject.keywords | Silly putty | spa |
dc.subject.keywords | Nanocomposite | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_8544 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.