Mostrar el registro sencillo del ítem

dc.contributor.authorPeña-Consuegra, Jorge
dc.contributor.authorUseche Vivero, Jairo
dc.contributor.authorPagnola, Marcelo
dc.date.accessioned2021-02-11T20:02:14Z
dc.date.available2021-02-11T20:02:14Z
dc.date.issued2020-12-24
dc.date.submitted2021-02-10
dc.identifier.citationJ. Peña-Consuegra, U. V. Jairo and M. Pagnola, "Key Aspects in the design of silicone/graphene-based strain sensors for structural monitoring," 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena de Indias, Colombia, 2020, pp. 1-5, doi: 10.1109/CIIMA50553.2020.9290292.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9990
dc.description.abstractThe graphene as a material used in engineering applications has been on the rise in the last decade due to being a material with interesting electrical and structural properties. This possibility offers a very wide range of technological applications. Among the potential fields of application is in the development of new sensors for structural applications. Recently the combination of graphene with cross-linked polysilicones has been proposed. This compound has interesting electrical and visco-elastic properties that have allowed the development of highly sensitive pressure and strain sensors. For this reason, their use as strain sensors in structures through structural health monitoring systems opens up an interesting field of research. The aim of this work is to study the mechanical behavior, and the characteristics required of graphene / polysicone-based sensors to be applied effectively in structural health monitoring systems.spa
dc.format.extent5 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.source2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA)spa
dc.titleKey Aspects in the design of silicone/graphene-based strain sensors for structural monitoringspa
dcterms.bibliographicCitationWarren and B. Eo, "X-ray diffraction study of carbon black", The journal of chemical physics, vol. 2.9, pp. 551-555, 1934.spa
dcterms.bibliographicCitationD. D. L. Chung, "Review: Graphite", J. Mater. Sci., vol. 37, no. 8, pp. 1475-1489, 2002.spa
dcterms.bibliographicCitationS. Basu and P. Bhattacharyya, "Recent developments on graphene and graphene oxide based solid state gas sensors", Sensors Actuators B Chem., vol. 173, pp. 1-21, 2012.spa
dcterms.bibliographicCitationA. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, The electronic properties of graphene, vol. 81, no. March, 2007.spa
dcterms.bibliographicCitationC. Berger et al., "Electronic Confinement and Coherence in Patterned Epitaxial Graphene", Science (80)., vol. 312, no. May, pp. 1191-1196, 2006.spa
dcterms.bibliographicCitationA. Reina et al., "Large Area Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition", Nano Lett., 2013.spa
dcterms.bibliographicCitationZ. Y. Xia et al., "The exfoliation of graphene in liquids by electrochemical chemical and sonication-assisted techniques: A nanoscale study", Adv. Funct. Mater, vol. 23, no. 37, pp. 4684-4693, 2013.spa
dcterms.bibliographicCitationK. Simeonidis et al., "Magnetic separation of hematite-coated Fe304 particles used as arsenic adsorbents", Chem. Eng. J., vol. 168, no. 3, pp. 1008-1015, 2011.spa
dcterms.bibliographicCitationM. Myekhlai, B. Munkhbayar, T. Lee, M. R. Tanshen, H. Chung and H. Jeong, "Experimental investigation of the mechanical grinding effect on graphene structure", RSC Adv., vol. 4, no. 5, pp. 2495-2500, 2014.spa
dcterms.bibliographicCitationC. Cosio-Castaneda, R. Martinez-Garcia and L. M. Socolovsky, "Syn-thesis of silanized maghemite nanoparticles onto reduced graphene sheets composites", Solid State Sci., vol. 30, pp. 17-20, 2014.spa
dcterms.bibliographicCitationL. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn and R. B. Kaner, "Intercalation and exfoliation routes to graphite nanoplatelets", J. Mater. Chem., vol. 15, no. 9, pp. 974-978, 2005.spa
dcterms.bibliographicCitationW. Ren and H. M. Cheng, "The global growth of graphene", Nat. Nanotechnol., vol. 9, no. 10, pp. 726-730, 2014.spa
dcterms.bibliographicCitationZ. S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang and H. M. Cheng, "Synthesis of high-quality graphene with a pre-determined number of layers", Carbon N. Y., vol. 47, no. 2, pp. 493-499, 2009.spa
dcterms.bibliographicCitationDaniel P. O'Driscoll et al., "Optimising composite viscosity leads to high sensitivity electromechancial sensors", 2D Materials 5.3, 2018.spa
dcterms.bibliographicCitationC. S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou, A. Harvey, C. Backes, Z. Li, M. S. Ferreira, M. E. Mobius et al., "Sensitive electromechanical sensors using viscoelasticgraphene-polymer nanocompos-ites", Science, vol. 354, no. 6317, pp. 1257-1260, 2016.spa
dcterms.bibliographicCitationR. Cross, "Elastic and viscous properties of silly putty", American Journal of Physics, vol. 80, no. 10, pp. 870-875, 2012.spa
dcterms.bibliographicCitationM. Goertz, X.- Y. Zhu and J. Houston, "Temperature dependent relaxation of a solid-liquid", Journal of Polymer Science Part B: Polymer Physics, vol. 47, no. 13, pp. 1285-1290, 2009.spa
dcterms.bibliographicCitationM. Liang and X.-H. Zhang, "Rheological properties of spin shock transmission application", Journal of Materials in Civil Engineering, vol. 27, no. 9, 2014.spa
dcterms.bibliographicCitationLi Qi et al., "Engineering of carbon nanotube/polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors", Journal of Materials Chemistry C 5.42, pp. 11092-11099, 2017.spa
dcterms.bibliographicCitationWang Xin et al., "Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity", ACS applied materials and interfaces 10.8, pp. 7371-7380, 2018.spa
dcterms.bibliographicCitationGao Yang et al., "Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites", Nanotechnology 29.23, 2018.spa
dcterms.bibliographicCitationF. Yin, D. Ye, C. Zhu, L. Qiu and Y. Huang, "Stretchable highly durable ternarynanocomposite strain sensor for structural health monitoring of flexible aircraft", Sensors, vol. 17, no. 11, 2017.spa
dcterms.bibliographicCitationHebert Marie, "A Silicone-based Soft Matrix Nanocomposite Strain-like Sensor Fabricated using Graphene and Silly Putty®", Sensors and Actuators A: Physical, vol. 11, 2020.spa
dcterms.bibliographicCitationS. G. Allen, S. Aggarwal and S. Russo, "Comprehensive polymer science supplement 2", Elsevier Science Limited, 1996.spa
dcterms.bibliographicCitationS. J. Clarson and J. A. Semlyen, Siloxane polymers, Prentice Hall, 1993.spa
dcterms.bibliographicCitationW. Noll, W. Noll et al., Chemistry and technology of silicones, 1968.spa
dcterms.bibliographicCitationR. Saito, G. Dresselhaus and M.S. Dresselhaus, Physical properties of carbon nanotubes, Singapur:Imperial college press, pp. 24-25, 1998.spa
dcterms.bibliographicCitationAndre Geim, "Electrons lose their mass in carbon shests", ature materials (UK), vol. 438, pp. 165-167, 2005.spa
dcterms.bibliographicCitationR. Resnick, D. Halliday and K. S. Krane, Fisica, CECSA, Mexico, 2003.spa
dcterms.bibliographicCitationMclver James, "Light-induced anomalous Hall effect graphene", Nature physics, vol. 16.1, pp. 38-41, 2020.spa
dcterms.bibliographicCitationM. I. Katsnelson, K. S. Novoselov and A. K. Geim, "Chiral tunnelling and the Klein paradox in graphene", Nature physics, vol. 2.9, pp. 620-625, 2006.spa
dcterms.bibliographicCitationAlshammari Abdullah, "Carbon-based polymer nanocomposites for sensing applications" in Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications, Elsevier, pp. 331-360, 2018.spa
dcterms.bibliographicCitationLakes Roderic and Roderic S. Lakes, Viscoelastic materials, Cambridge university press, 2014.spa
dcterms.bibliographicCitationPark Chiyoung and Seoung-Ki Lee, "Electrical Adaptiveness and Electromechanical Response in Gel Composites of Carbon N anomaterials", ChemElectroChem, vol. 5.23, pp. 3589-3596, 2018.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9290292
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1109/CIIMA50553.2020.9290292
dc.subject.keywordsSiliconespa
dc.subject.keywordsGraphenespa
dc.subject.keywordsPolydimethylsiloxanespa
dc.subject.keywordsStrain sensorspa
dc.subject.keywordsSilly puttyspa
dc.subject.keywordsNanocompositespa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_8544spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.