Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.date.accessioned2021-02-09T22:18:26Z
dc.date.available2021-02-09T22:18:26Z
dc.date.issued2020-12-02
dc.date.submitted2021-02-09
dc.identifier.citationMontoya, Oscar D.; Gil-González, Walter; Grisales-Noreña, Luis F. 2020. "Hybrid GA-SOCP Approach for Placement and Sizing of Distributed Generators in DC Networks" Appl. Sci. 10, no. 23: 8616. https://doi.org/10.3390/app10238616spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9976
dc.description.abstractThis research addresses the problem of the optimal location and sizing distributed generators (DGs) in direct current (DC) distribution networks from the combinatorial optimization. It is proposed a master–slave optimization approach in order to solve the problems of placement and location of DGs, respectively. The master stage applies to the classical Chu & Beasley genetic algorithm (GA), while the slave stage resolves a second-order cone programming reformulation of the optimal power flow problem for DC grids. This master–slave approach generates a hybrid optimization approach, named GA-SOCP. The main advantage of optimal dimensioning of DGs via SOCP is that this method makes part of the exact mathematical optimization that guarantees the possibility of finding the global optimal solution due to the solution space’s convex structure, which is a clear improvement regarding classical metaheuristic optimization methodologies. Numerical comparisons with hybrid and exact optimization approaches reported in the literature demonstrate the proposed hybrid GA-SOCP approach’s effectiveness and robustness to achieve the global optimal solution. Two test feeders compose of 21 and 69 nodes that can locate three distributed generators are considered. All of the computational validations have been carried out in the MATLAB software and the CVX tool for convex optimization.spa
dc.format.extent18 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleHybrid ga-socp approach for placement and sizing of distributed generators in DC networksspa
dcterms.bibliographicCitationKwon, M.; Choi, S. Control scheme for autonomous and smooth mode switching of bidirectional DC–DC converters in a DC microgrid. IEEE Trans. Power Electron. 2017, 33, 7094–7104.spa
dcterms.bibliographicCitationGarcés, A. Stability Analysis of DC-Microgrids: A Gradient Formulation. J. Control Autom. Electr. Syst. 2019, 30, 985–993.spa
dcterms.bibliographicCitationWang, L.; Wang, K.H.; Lee, W.J.; Chen, Z. Power-flow control and stability enhancement of four parallel-operated offshore wind farms using a line-commutated HVDC link. In Wind Energy Conversion Systems; Springer: Berlin/Heidelberg, Germany, 2012; pp. 385–414.spa
dcterms.bibliographicCitationGavriluta, C.; Candela, I.; Citro, C.; Luna, A.; Rodriguez, P. Design considerations for primary control in multi-terminal VSC-HVDC grids. Electr. Power Syst. Res. 2015, 122, 33–41.spa
dcterms.bibliographicCitationSimiyu, P.; Xin, A.; Wang, K.; Adwek, G.; Salman, S. Multiterminal Medium Voltage DC Distribution Network Hierarchical Control. Electronics 2020, 9, 506.spa
dcterms.bibliographicCitationJusto, J.J.; Mwasilu, F.; Lee, J.; Jung, J.W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405.spa
dcterms.bibliographicCitationParhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the Art in Research on Microgrids: A Review. IEEE Access 2015, 3, 890–925.spa
dcterms.bibliographicCitationKumar, D.; Zare, F.; Ghosh, A. DC microgrid technology: System architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects. IEEE Access 2017, 5, 12230–12256.spa
dcterms.bibliographicCitationLotfi, H.; Khodaei, A. AC versus DC microgrid planning. IEEE Trans. Smart Grid 2015, 8, 296–304.spa
dcterms.bibliographicCitationGelani, H.; Dastgeer, F.; Siraj, K.; Nasir, M.; Niazi, K.; Yang, Y. Efficiency Comparison of AC and DC Distribution Networks for Modern Residential Localities. Appl. Sci. 2019, 9, 582.spa
dcterms.bibliographicCitationRouzbehi, K.; Miranian, A.; Candela, J.I.; Luna, A.; Rodriguez, P. A Generalized Voltage Droop Strategy for Control of Multiterminal DC Grids. IEEE Trans. Ind. Appl. 2015, 51, 607–618.spa
dcterms.bibliographicCitationRouzbehi, K.; Miranian, A.; Luna, A.; Rodriguez, P. DC Voltage Control and Power Sharing in Multiterminal DC Grids Based on Optimal DC Power Flow and Voltage-Droop Strategy. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 1171–1180.spa
dcterms.bibliographicCitationGarcés, A. Convex Optimization for the Optimal Power Flow on DC Distribution Systems. In Handbook of Optimization in Electric Power Distribution Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 121–137spa
dcterms.bibliographicCitationGarcés, A. On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777.spa
dcterms.bibliographicCitationGarces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153.spa
dcterms.bibliographicCitationHamad, A.A.; El-Saadany, E.F. Multi-agent supervisory control for optimal economic dispatch in DC microgrids. Sustain. Cities Soc. 2016, 27, 129–136.spa
dcterms.bibliographicCitationBarabanov, N.; Ortega, R.; Griñó, R.; Polyak, B. On Existence and Stability of Equilibria of Linear Time-Invariant Systems With Constant Power Loads. IEEE Trans. Circuits Syst. I 2016, 63, 114–121.spa
dcterms.bibliographicCitationChauhan, R.K.; Chauhan, K.; Guerrero, J.M. Controller design and stability analysis of grid connected DC microgrid. J. Renew. Sustain. Energy 2018, 10, 035101.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L. Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches. Int. J. Electr. Power Energy Syst. 2020, 115, 105442.spa
dcterms.bibliographicCitationGrisales-Noreña, L.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488.spa
dcterms.bibliographicCitationFantauzzi, M.; Lauria, D.; Mottola, F.; Scalfati, A. Sizing energy storage systems in DC networks: A general methodology based upon power losses minimization. Appl. Energy 2017, 187, 862–872.spa
dcterms.bibliographicCitationCastillo-Calzadilla, T.; Macarulla, A.M.; Kamara-Esteban, O.; Borges, C.E. A case study comparison between photovoltaic and fossil generation based on direct current hybrid microgrids to power a service building. J. Clean. Prod. 2020, 244, 118870.spa
dcterms.bibliographicCitationChiodo, E.; Fantauzzi, M.; Lauria, D.; Mottola, F. A Probabilistic Approach for the Optimal Sizing of Storage Devices to Increase the Penetration of Plug-in Electric Vehicles in Direct Current Networks. Energies 2018, 11, 1238.spa
dcterms.bibliographicCitationMontoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks. Eng. Sci. Technol. Int. J. 2020, 23, 527–533.spa
dcterms.bibliographicCitationMontoya, O.D.; Garrido, V.M.; Grisales-Noreña, L.F.; Gil-González, W.; Garces, A.; Ramos-Paja, C.A. Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS. In Proceedings of the 2018 IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM), Salto, Uruguay, 14–16 November 2018; pp. 1–5.spa
dcterms.bibliographicCitationMontoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W.; Alcalá, G.; Hernandez-Escobedo, Q. Optimal Location and Sizing of PV Sources in DC Networks for Minimizing Greenhouse Emissions in Diesel Generators. Symmetry 2020, 12, 322.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Garzon-Rivera, O.D.; Montoya, O.D.; Ramos-Paja, C.A. Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks. In Proceedings of the Workshop on Engineering Applications, Santa Marta, Colombia, 16–18 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 214–225.spa
dcterms.bibliographicCitationHuang, L.; Chen, Z.; Cui, Q.; Zhang, J.; Wang, H.; Shu, J. Optimal planning of renewable energy source and energy storage in a medium- and low-voltage distributed AC/DC system in China. J. Eng. 2019, 2019, 2354–2361.spa
dcterms.bibliographicCitationLi, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506.spa
dcterms.bibliographicCitationBenson, H.Y.; Sağlam, Ü. Mixed-Integer Second-Order Cone Programming: A Survey. In Theory Driven by Influential Applications; INFORMS: Catonsville, MD, USA, 2013; pp. 13–36.spa
dcterms.bibliographicCitationLi, Q.; Vittal, V. Convex Hull of the Quadratic Branch AC Power Flow Equations and Its Application in Radial Distribution Networks. IEEE Trans. Power Syst. 2018, 33, 839–850.spa
dcterms.bibliographicCitationFarivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification-Part I. IEEE Trans. Power Syst. 2013, 28, 2554–2564.spa
dcterms.bibliographicCitationLambora, A.; Gupta, K.; Chopra, K. Genetic Algorithm- A Literature Review. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; IEEE: Piscataway, NJ, USA, 2019.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Orozco-Henao, C. Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach. Eng. Sci. Technol. Int. J. 2020.spa
dcterms.bibliographicCitationSahin, O.; Akay, B. Comparisons of metaheuristic algorithms and fitness functions on software test data generation. Appl. Soft Comput. 2016, 49, 1202–1214.spa
dcterms.bibliographicCitationBadem, H.; Basturk, A.; Caliskan, A.; Yuksel, M.E. A new hybrid optimization method combining artificial bee colony and limited-memory BFGS algorithms for efficient numerical optimization. Appl. Soft Comput. 2018, 70, 826–844.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. A MIQP model for optimal location and sizing of dispatchable DGs in DC networks. Energy Syst. 2020, 1–22.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2076-3417/10/23/8616/htm
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/app10238616
dc.subject.keywordsDirect current networksspa
dc.subject.keywordsOptimal power flow analysisspa
dc.subject.keywordsMetaheuristic optimizationspa
dc.subject.keywordsMaster-slave optimizationspa
dc.subject.keywordsGenetic algorithmsspa
dc.subject.keywordsSecond-order cone programmingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.