Mostrar el registro sencillo del ítem
Higher-order kinematic analyses of a planar parallel robot based on screw theory
dc.contributor.author | Rodelo, M | |
dc.contributor.author | Villa Ramírez, José Luis | |
dc.contributor.author | Yime, E | |
dc.date.accessioned | 2021-02-09T22:17:27Z | |
dc.date.available | 2021-02-09T22:17:27Z | |
dc.date.issued | 2020 | |
dc.date.submitted | 2021-02-09 | |
dc.identifier.citation | M Rodelo et al 2020 J. Phys.: Conf. Ser. 1671 012002 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9975 | |
dc.description.abstract | This paper presents the higher-order kinematic analyses of a planar parallel robot, addressed by means of the theory of screws. The reduced velocity, acceleration, jerk and hyper-jerk state for the end-effector of robot was developed as a spatial vector by applying the concept of Lie algebra and helicoidal vector field. In order to verify the effectiveness of this theoretical development, the kinematics models obtained was solved and simulated in MATLAB environment, using Freeth's Nephroid trajectory as reference path for tracking with the end-effector. The simulation results proved that this type of spatial notation is convenient, because it allows us to quickly develop equations of motion and express them succinctly in symbolic form, reducing the volume of algebra, simplifying the modeling tasks, implementation and execution the algorithms used to solve kinematic problems in parallel robots. The major contribution of this work is the possibility of extended the classical kinematic analysis to a high order system; where the application of screw theory becomes a safe and reliable mathematical tool, which may be successfully used on parallel planar robots with singular configurations, represented with helicoidal vector field. | spa |
dc.format.extent | 9 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Journal of Physics: Conference Series, Volume 1671 | spa |
dc.title | Higher-order kinematic analyses of a planar parallel robot based on screw theory | spa |
dcterms.bibliographicCitation | Selig J M 2004 Lie groups and Lie algebras in robotics Computational Noncommutative Algebra and Applications vol 136, ed Byrnes J (Dordrecht: Springer) | spa |
dcterms.bibliographicCitation | Gallardo-Alvarado J 2016 Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory (Switzerland: Springer International Publishing) | spa |
dcterms.bibliographicCitation | Sun T, Yang S, Lian B 2020 Finite and Instantaneous Screw Theory in Robotic Mechanism (Singapore: Springer) | spa |
dcterms.bibliographicCitation | Chen Q, Jian D 2020 Analysis and Synthesis of Compliant Parallel Mechanisms - Screw Theory Approach (Switzerland: Springer International Publishing) | spa |
dcterms.bibliographicCitation | Zheng C, Han K, Bao J, Wen W, Sun K 2020 Dynamic analysis and simulation of six-axis cooperative robot based on screw theory Journal of Physics: Conference Series 1549 042087:1 | spa |
dcterms.bibliographicCitation | Guiju F, Zhao L, Tiantao F, Hao Z, Fu Q, Xiaohan S 2019 Kinematics modeling and analysis of leveling mechanism of orchard work platform based on screw theory Journal of Physics: Conference Series 1237 052042:1 | spa |
dcterms.bibliographicCitation | Zhao T J, Wang Y W, Sun M J 2018 Structure design and analysis of metamorphic mobile robot based on screw theory IEEE International Conference on Intelligence and Safety for Robotics (ISR) (Shenyang: IEEE) | spa |
dcterms.bibliographicCitation | Chai X, Wang M, Xu L, Ye W 2020 Dynamic modeling and analysis of a 2PRU-UPR parallel robot based on screw theory IEEE Access 8 78868 | spa |
dcterms.bibliographicCitation | Cibicik A, Egeland O 2020 Kinematics and dynamics of flexible robotic manipulators using dual screws IEEE Transactions on Robotics Early Access 1 | spa |
dcterms.bibliographicCitation | Ophaswongse C, Agrawal S K 2020 Optimal design of a novel 3-DOF orientational parallel mechanism for pelvic assistance on a wheelchair: an approach based on kinematic geometry and screw theory IEEE Robotics and Automation Letters 5(2) 3315 | spa |
dcterms.bibliographicCitation | Cardona M, Cena C G 2019 Direct kinematics and Jacobian analysis of exoskeleton robots using screw theory and simscape multibody IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX) (Guatemala City: IEEE) | spa |
dcterms.bibliographicCitation | Eager D, Pendrill A M, Reistad N 2016 Beyond velocity and acceleration: jerk, snap and higher derivatives European Journal of Physics 37(6) 065008:1 | spa |
dcterms.bibliographicCitation | Zhang Z, Shao Z, Wang L 2018 Improving the kinematic performance of a planar 3-RRR parallel manipulator through actuation mode conversion Mechanism and Machine Theory 130 86 | spa |
dcterms.bibliographicCitation | Rodelo M, Villa J L, Duque J, Yime E 2018 Kinematic analysis and performance of a planar 3RRR parallel robot with kinematic redundancy using screw theory IEEE 2nd Colombian Conference on Robotics and Automation (CCRA) (Barranquilla: IEEE) | spa |
dcterms.bibliographicCitation | Featherstone R 2008 Rigid Body Dynamics Algorithms (Boston: Springer) | spa |
dcterms.bibliographicCitation | Chevallier D, Lerbet J 2018 The displacement group as a Lie group Multi-Body Kinematics and Dynamics with Lie Groups (London: ISTE Press Ltd.) chapter 1 | spa |
dcterms.bibliographicCitation | Gallardo-Alvarado J, Rodriguez R, Caudillo-Ram´ırez M, P´erez Gonz´alez L 2015 An application of screw theory to the Jerk analysis of a two-degrees-of-freedom parallel wrist Robotics 4 50 | spa |
dcterms.bibliographicCitation | Gallardo-Alvarado J 2014 Hyper-jerk analysis of robot manipulators Journal of Intelligent & Robotic Systems 74 625 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://iopscience.iop.org/article/10.1088/1742-6596/1671/1/012002 | |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1088/1742-6596/1671/1/012002 | |
dc.subject.keywords | Algebra | spa |
dc.subject.keywords | Equations of motion | spa |
dc.subject.keywords | Kinematics | spa |
dc.subject.keywords | MATLAB | spa |
dc.subject.keywords | Screws | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_8544 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.