Show simple item record

dc.contributor.authorDominguez-Jimenez, J. A.
dc.contributor.authorMontoya, O.D.
dc.contributor.authorCampillo, J.
dc.contributor.authorGil-González, W.
dc.date.accessioned2021-02-09T21:52:25Z
dc.date.available2021-02-09T21:52:25Z
dc.date.issued2020-11-25
dc.date.submitted2021-02-09
dc.identifier.citationJ. A. Dominguez-Jimenez, O. D. Montoya, J. Campillo and W. Gil-González, "Economic dispatch in DC Microgrids considering different battery technologies: A Benchmark Study," 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 2020, pp. 1-6, doi: 10.1109/ROPEC50909.2020.9258675.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9969
dc.description.abstractLarge penetration of variable renewable sources and electronic loads put short-term stress on microgrids. Energy storage systems account for a reliable way to mitigate these issues. However, depending on the electro-chemistry, each one can contribute differently to the reduction of daily energy losses. Accordingly, this work presents a benchmark of the introduction of two battery technologies into DC microgrids. The GAMS package was used to solve the economic dispatch problem. Results show that lithium-based technologies showed higher overall performance against lead-acid counterparts. Particularly, iron phosphate technology was not only able to reduce daily energy losses but also to reduce power losses by over 40%. The results of this work provide great insights for planning DC microgrids.spa
dc.format.extent6 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.source2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)spa
dc.titleEconomic dispatch in DC Microgrids considering different battery technologies: A Benchmark Studyspa
dcterms.bibliographicCitationA. Gallo, J. Simões-Moreira, H. Costa, M. Santos and E. M. dos Santos, "Energy storage in the energy transition context: A technology review", Renewable and sustainable energy reviews, vol. 65, pp. 800-822, 2016.spa
dcterms.bibliographicCitationM. Hulme, "1.5 c and climate research after the paris agreement" in Nature Climate Change, vol. 6, no. 3, pp. 222-224, 2016.spa
dcterms.bibliographicCitationD. J. Olsen, Y. Dvorkin, R. Fernandez-Blanco and M. A. Ortega-Vazquez, "Optimal carbon taxes for emissions targets in the electricity sector", IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 5892-5901, 2018.spa
dcterms.bibliographicCitationI. E. Agency, Global co2 emissions in 2019, Feb. 2020, [online] Available: https://www.iea.org/articles/global-co2-emissions-in-2019.spa
dcterms.bibliographicCitationElectric vehicles, Feb. 2020, [online] Available: https://www.iea.org/fuels-and-technologies/electric-vehicles.spa
dcterms.bibliographicCitationS. Heitel, K. Seddig, J. J. G. Vilchez and P. Jochem, "Global electric car market deployment considering endogenous battery price development" in Technological Learning in the Transition to a Low-Carbon Energy System, Elsevier, pp. 281-305, 2020.spa
dcterms.bibliographicCitationM. Stevenson, "Lithium-ion battery packs now 209 perkwh will fallto 100 by 2025: Bloomberg analysis", Green Car Reports, 2017.spa
dcterms.bibliographicCitationP. Lezhniuk, I. Kotylko and S. Kravchuk, "Increasing electric network reliability by dispersed generation", 2019 IEEE 20th International Conference on Computational Problems of Electrical Engineering (CPEE), pp. 1-4, 2019.spa
dcterms.bibliographicCitationS. Zheng and Y. Han, Economic dispatch of energy system with uncertain renewable energy sources, 2019.spa
dcterms.bibliographicCitationJ. T. Warner, Lithium-Ion Battery Chemistries: A Primer, Elsevier, 2019.spa
dcterms.bibliographicCitationT. Kim, W. Song, D.-Y. Son, L. K. Ono and Y. Qi, "Lithium-ion batteries: outlook on present future and hybridized technologies", Journal of materials chemistry A, vol. 7, no. 7, pp. 2942-2964, 2019.spa
dcterms.bibliographicCitationH. Ibrahim, A. Ilinca and J. Perron, "Energy storage sys-tems-characteristics and comparisons", Renewable and sustainable energy reviews, vol. 12, no. 5, pp. 1221-1250, 2008.spa
dcterms.bibliographicCitationM. F. Zia, E. Elbouchikhi, M. Benbouzid and J. M. Guerrero, "Energy management system for an islanded microgrid with convex relaxation", IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 7175-7185, 2019.spa
dcterms.bibliographicCitationM. U. Mutarraf, Y. Terriche, K. A. K. Niazi, J. C. Vasquez and J. M. Guerrero, "Energy storage systems for shipboard microgrids-a review", Energies, vol. 11, no. 12, pp. 3492, 2018.spa
dcterms.bibliographicCitationW. Gil-González, O. D. Montoya, E. Holguín, A. Garces and L. F. Grisales-Noreña, "Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model", Journal of Energy Storage, vol. 21, pp. 1-8, 2019.spa
dcterms.bibliographicCitationE. Ozdernir, S. Ozdemir, K. Erhan and A. Aktas, "Energy storage technologies opportunities and challenges in smart grids", 2016 International Smart Grid Workshop and Certificate Program (ISGWCP), pp. 1-6, 2016.spa
dcterms.bibliographicCitationK. K. Zame, C. A. Brehm, A. T. Nitica, C. L. Richard and G. D. Schweitzer, "Smart grid and energy storage: Policy recommendations", Renewable and Sustainable Energy Reviews, vol. 82, pp. 1646-1654, 2018.spa
dcterms.bibliographicCitationX. Shen, M. Shahidehpour, Y. Han, S. Zhu and J. Zheng, "Expansion planning of active distribution networks with centralized and distributed energy storage systems", IEEE Transactions on Sustainable Energy, vol. 8, no. 1, pp. 126-134, 2016.spa
dcterms.bibliographicCitationL. F. Ochoa et al., "Optimal sizing and control of energy storage in wind power-rich distribution networks", 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1-1, 2016.spa
dcterms.bibliographicCitationM. Sedghi, A. Ahmadian and M. Aliakbar-Golkar, "Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation", IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 304-316, 2015.spa
dcterms.bibliographicCitationA. S. Awad, T. H. El-Fouly and M. M. Salama, "Optimal ess allocation and load shedding for improving distribution system reliability", IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2339-2349, 2014.spa
dcterms.bibliographicCitationI. Miranda, N. Silva and H. Leite, "A holistic approach to the integration of battery energy storage systems in island electric grids with high wind penetration", IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp. 775-785, 2015.spa
dcterms.bibliographicCitationY. Yang, H. Li, A. Aichhorn, J. Zheng and M. Greenleaf, "Sizing strategy of distributed battery storage system with high penetration of photovoltaic for voltage regulation and peak load shaving", IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 982-991, 2013.spa
dcterms.bibliographicCitationT. Qiu, B. Xu, Y. Wang, Y. Dvorkin and D. S. Kirschen, "Stochastic multistage coplanning of transmission expansion and energy storage", IEEE Transactions on Power Systems, vol. 32, no. 1, pp. 643-651, 2016.spa
dcterms.bibliographicCitationH. Alharbi and K. Bhattacharya, "Stochastic optimal planning of battery energy storage systems for isolated microgrids", IEEE Transactions on Sustainable Energy, vol. 9, no. 1, pp. 211-227, 2017.spa
dcterms.bibliographicCitationJ. Amankwah-Amoah, "Solar energy in sub-saharan africa: The challenges and opportunities of technological leapfrogging", Thunderbird International Business Review, vol. 57, no. 1, pp. 15-31, 2015.spa
dcterms.bibliographicCitationJ. M. Aberilla, A. Gallego-Schmid, L. Stamford and A. Azapagic, "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities", Applied Energy, vol. 258, pp. 114004, 2020.spa
dcterms.bibliographicCitationT. Prabatha, J. Hager, B. Carneiro, K. Hewage and R. Sadiq, "Analyzing energy options for small-scale off-grid communities: A canadian case study", Journal of Cleaner Production, vol. 249, pp. 119320, 2020.spa
dcterms.bibliographicCitationI. G. E. Outlook, to electric mobility, Paris, France:IEA, 2019.spa
dcterms.bibliographicCitationP. Ralon, M. Taylor, A. Ilas, H. Diaz-Bone and K. Kairies, "Electricity storage and renewables: Costs and markets to 2030", International Renewable Energy Agency: Abu Dhabi UAE, 2017.spa
dcterms.bibliographicCitationS. Khillari, Battery energy storage systems market analysis- recent industry trends report 2026, 2020.spa
dcterms.bibliographicCitationH. Keshan, J. Thornburg and T. S. Ustun, Comparison of lead-acid and lithium ion batteries for stationary storage in off-grid energy systems, 2016.spa
dcterms.bibliographicCitationP. Patel, "Potassium batteries show promise", IEEE Spectrum, 2020.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9258675
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1109/ROPEC50909.2020.9258675
dc.subject.keywordsDC Microgridsspa
dc.subject.keywordsEnergy Storagespa
dc.subject.keywordsActive power lossesspa
dc.subject.keywordsGAMSspa
dc.subject.keywordsEconomic dispatchspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_8544spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.