Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar
dc.contributor.authorGil-González, Walter
dc.contributor.authorSierra, Federico
dc.contributor.authorDomínguez Jiménez, Juan Antonio
dc.contributor.authorCampillo Jiménez, Javier Eduardo
dc.contributor.authorHernández, Jesus C.
dc.date.accessioned2021-02-09T21:47:00Z
dc.date.available2021-02-09T21:47:00Z
dc.date.issued2020-11-25
dc.date.submitted2021-02-09
dc.identifier.citationO. Montoya, W. Gil-González, F. Serra, J. Dominguez, J. Campillo and J. C. Hernandez, "Direct Power Control Design for Charging Electric Vehicles: A Passivity-Based Control Approach," 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 2020, pp. 1-6, doi: 10.1109/ROPEC50909.2020.9258690.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9967
dc.description.abstractThis paper explores the controller's design for charging batteries for electric vehicle applications using the direct power representation of the system. These controllers' design is made via passivity-based control (PBC) theory by considering the open-loop port-Hamiltonian representation of the converter. The usage of PBC theory allows designing controllers for closed-loop operation, guaranteeing stability operation in the sense of Lyapunov. Two different PBC methods are explored in this contribution; these are i) interconnection and damping assignment PBC, and ii) proportional-integral design. These methods work over the system's incremental model for reaching a control law that ensures asymptotic stability. Numerical validations show that both controllers allow controlling active and reactive power independently in four-quadrants. This is important due to allow using batteries as dynamic energy compensators if it is needed. All the simulations are conducted in MATLAB simulink via SymPowerSystems library.spa
dc.format.extent6 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.source2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)spa
dc.titleDirect Power Control Design for Charging Electric Vehicles: A Passivity-Based Control Approachspa
dcterms.bibliographicCitationM. Yilmaz and P. T. Krein, "Review of the Impact of Vehicle-to-Grid Technologies on Distribution Systems and Utility Interfaces", IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5673-5689, 2013.spa
dcterms.bibliographicCitationL. M. Fernández, F. Serra, C. D. Angelo and O. Montoya, "Control of a charging station for electric vehicles", J. Phys. Conf. Ser., vol. 1448, pp. 012013, jan 2020.spa
dcterms.bibliographicCitationS. Haghbin, S. Lundmark, M. Alakula and O. Carlson, "Grid-Connected Integrated Battery Chargers in Vehicle Applications: Review and New Solution", IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013.spa
dcterms.bibliographicCitationO. D. Montoya, W. J. Gil-González, A. Garcés and A. Escobar, "Nonlinear Control for Battery Energy Storage Systems in Power Grids", 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70, 2018.spa
dcterms.bibliographicCitationF. M. Serra and C. H. De Angelo, "IDA-PBC control of a single-phase battery charger for electric vehicles with unity power factor", 2016 IEEE Conference on Control Applications(CCA), pp. 261-266, 2016.spa
dcterms.bibliographicCitationW. Gil-González, O. D. Montoya and A. Garces, "Direct power control of electrical energy storage systems: A passivity-based PI approach", Electr. Power Syst. Res., vol. 175, pp. 105885, 2019.spa
dcterms.bibliographicCitationW. Gil-González, F. M. Serra, O. D. Montoya, C. A. Ramírez and C. Orozco-Henao, "Direct Power Compensation in AC Distribution Networks with SCES Systems via PI-PBC Approach", Symmetry, vol. 12, no. 4, pp. 666, apr 2020.spa
dcterms.bibliographicCitationR. Ortega, A. van der Schaft, B. Maschke and G. Escobar, "Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems", Automatica, vol. 38, no. 4, pp. 585-596, apr 2002.spa
dcterms.bibliographicCitationR. Cisneros, M. Pirro, G. Bergna, R. Ortega, G. Ippoliti and M. Molinas, "Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters", Control Eng. Pract., vol. 43, pp. 109-119, oct 2015.spa
dcterms.bibliographicCitationF. M. Serra, L. L. M. Fernández, O. D. Montoya, W. J. Gil-González and J. C. Hernández, "Nonlinear Voltage Control for Three-Phase DC-AC Converters in Hybrid Systems: An Application of the PI-PBC Method", Electronics, vol. 9, no. 5, pp. 847, may 2020.spa
dcterms.bibliographicCitationF. M. Serra and C. H. D. Angelo, "IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions", Electr. Power Syst. Res., vol. 142, pp. 12-19, jan 2017.spa
dcterms.bibliographicCitationO. D. Montoya, W. Gil-González and F. M. Serra, "PBC Approach for SMES Devices in Electric Distribution Networks", IEEE Trans. Circuits Syst. II, vol. 65, no. 12, pp. 2003-2007, 2018.spa
dcterms.bibliographicCitationJ. C. Hernández, F. Sanchez-Sutil and F. Muñoz-Rodríguez, "Design criteria for the optimal sizing of a hybrid energy storage system in PV household-prosumers to maximize self-consumption and self-sufficiency", Energy, vol. 186, pp. 115827, 2019.spa
dcterms.bibliographicCitationA. Lopez, B. Ogayar, J. C. Hernández and F. Sutil, "Survey and assessment of technical and economic features for the provision of frequency control services by household-prosumers", Energy Policy, vol. 146, pp. 111739, 2020.spa
dcterms.bibliographicCitationJ. C. Hernández, F. Sanchez-Sutil and C. Baier, "Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve", Applied Energy, vol. 277, pp. 115529, 2020.spa
dcterms.bibliographicCitationO. D. Montoya and A. Garces, "Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches", Int. J. Electr. Power Energy Syst., vol. 112, pp. 221-231, nov 2019.spa
dcterms.bibliographicCitationR. Ortega, I. Mareels, A. J. van der Schaft and B. Maschke, "Energy shaping revisited", Proceedings of the 2000 IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162), pp. 121-126, 2000.spa
dcterms.bibliographicCitationR. Ortega, A. van der Schaft, F. Castanos and A. Astolfi, "Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems", IEEE Trans. Autom. Control, vol. 53, no. 11, pp. 2527-2542, 2008.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9258690
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1109/ROPEC50909.2020.9258690
dc.subject.keywordsActive and reactive power controlspa
dc.subject.keywordsBatteries in electric vehiclesspa
dc.subject.keywordsDirect power formulationspa
dc.subject.keywordsIncremental modelspa
dc.subject.keywordsPassivity-based controlspa
dc.subject.keywordsStability analysisspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_8544spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.