Mostrar el registro sencillo del ítem
Neuro-fuzzy inverse optimal control incorporating a multistep predictor as applied to T1DM patients
dc.contributor.author | Alanis, Alma Y. | |
dc.contributor.author | Rios, Y. Yuliana | |
dc.contributor.author | García Rodríguez, J. A. | |
dc.contributor.author | Sanchez, Edgar N. | |
dc.contributor.author | Ruíz-Velázquez, E. | |
dc.contributor.author | Pardo García, Aldo | |
dc.date.accessioned | 2021-02-08T17:53:14Z | |
dc.date.available | 2021-02-08T17:53:14Z | |
dc.date.issued | 2020 | |
dc.date.submitted | 2021-02-08 | |
dc.identifier.citation | Alanis, A., Rios, Y., García-Rodríguez, J., Sanchez, E., Ruiz-Velázquez, E. and Garcia, A., 2020. Neuro-fuzzy inverse optimal control incorporating a multistep predictor as applied to T1DM patients. Control Applications for Biomedical Engineering Systems, pp.1-24. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9960 | |
dc.description.abstract | Emerging technologies seek to provide effective solutions to the most severe health problems such as type 1 diabetes mellitus (T1DM). In fact, the number of diabetics around the world has increased as well as the mortality rate associated with this condition. T1DM is caused by an autoimmune failure which disables the pancreas to produce insulin; therefore, glucose is not correctly metabolized to be used as efficient energy. Consequently, the most important fact is to keep the patient's blood glucose level within normal ranges in order to avoid long-term complications. Recently, engineering innovative approaches based on intelligent systems such as artificial neural networks have been proposed for control in biomedical systems. In this work, a novel neuro-fuzzy control scheme for blood glucose regulation in virtual T1DM patients is proposed. The glucose-insulin dynamics is modeled by a recurrent high-order neural network and then a neural multistep predictor is incorporated in order to know the glucose behavior within a 15-min horizon; thereby, allowing the knowledge of future values to determine the convenient basal infusion insulin rate as defined by the fuzzy membership functions. Test using the well-known Uva/Padova simulator illustrated that the proposed neuro-fuzzy controller maintains normoglycemia in virtual populations of adults, adolescents, and children digressing from two other neuro control approaches. Thus, intelligent systems based on neural networks offer enormous potential for health improvement of T1DM patients. The present contribution illustrates very encouraging results to closed-loop glucose level regulation regarding the autonomous artificial pancreas. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Control Applications for Biomedical Engineering Systems 2020, Pages 1-24 | spa |
dc.title | Neuro-fuzzy inverse optimal control incorporating a multistep predictor as applied to T1DM patients | spa |
dcterms.bibliographicCitation | Alanis, A.Y., Sanchez, E.N., Loukianov, A.G. Discrete-time adaptive backstepping nonlinear control via high-order neural networks (2007) IEEE Transactions on Neural Networks, 18 (4), pp. 1185-1195. Cited 130 times. doi: 10.1109/TNN.2007.899170 | spa |
dcterms.bibliographicCitation | Almobaied, M., Eksin, I., Guzelkaya, M. Inverse optimal controller based on extended Kalman filter for discrete-time nonlinear systems (2018) Optimal Control Applications and Methods, 39 (1), pp. 19-34. Cited 11 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1514 doi: 10.1002/oca.2331 | spa |
dcterms.bibliographicCitation | Bamgbose, S.O., Li, X., Qian, L. Closed loop control of blood glucose level with neural network predictor for diabetic patients (2017) 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services, Healthcom 2017, 2017-December, pp. 1-6. Cited 3 times. ISBN: 978-150906704-6 doi: 10.1109/HealthCom.2017.8210817 | spa |
dcterms.bibliographicCitation | Basar, T., Olsder, G.J. (1999) Dynamic Noncooperative Game Theory, p. 526. Cited 2808 times. Society for Industrial and Applied Mathematics, New Brunswick, NJ | spa |
dcterms.bibliographicCitation | Batora, V., Tarnik, M., Murgas, J., Schmidt, S., Norgaard, K., Poulsen, N.K., Madsen, H., (...), Jørgensen, J.B. Bihormonal control of blood glucose in people with type 1 diabetes (2015) 2015 European Control Conference, ECC 2015, art. no. 7330520, pp. 25-30. Cited 6 times. ISBN: 978-395242693-7 doi: 10.1109/ECC.2015.7330520 | spa |
dcterms.bibliographicCitation | Bequette, B.W., Cameron, F., Buckingham, B.A., Maahs, D.M., Lum, J. Overnight Hypoglycemia and Hyperglycemia Mitigation for Individuals with Type 1 Diabetes: How Risks Can Be Reduced (2018) IEEE Control Systems, 38 (1), art. no. 8263423, pp. 125-134. Cited 16 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2767119 | spa |
dcterms.bibliographicCitation | Bondia, J., Romero-Vivo, S., Ricarte, B., Diez, J.L. Insulin Estimation and Prediction: A Review of the Estimation and Prediction of Subcutaneous Insulin Pharmacokinetics in Closed-Loop Glucose Control (Open Access) (2018) IEEE Control Systems, 38 (1), art. no. 8263487, pp. 47-66. Cited 23 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766312 | spa |
dcterms.bibliographicCitation | Chen, P.-A., Chang, L.-C., Chang, F.-J. Reinforced recurrent neural networks for multi-step-ahead flood forecasts (2013) Journal of Hydrology, 497, pp. | spa |
dcterms.bibliographicCitation | Cinar, A. Artificial Pancreas Systems: An Introduction to the Special Issue (Open Access) (2018) IEEE Control Systems, 38 (1), art. no. 8263484, pp. 26-29. Cited 17 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766321 | spa |
dcterms.bibliographicCitation | Colmegna, P., Sánchez Peña, R.S., Gondhalekar, R., Dassau, E., Doyle, F.J. Reducing risks in type 1 diabetes using H∞ Control (2014) IEEE Transactions on Biomedical Engineering, 61 (12), art. no. 6851161, pp. 2939-2947. Cited 33 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?reload=true&punumber=10 doi: 10.1109/TBME.2014.2336772 | spa |
dcterms.bibliographicCitation | El Fathi, A., Raef Smaoui, M., Gingras, V., Boulet, B., Haidar, A. The Artificial Pancreas and Meal Control: An Overview of Postprandial Glucose Regulation in Type 1 Diabetes (2018) IEEE Control Systems, 38 (1), art. no. 8263488, pp. 67-85. Cited 33 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766323 | spa |
dcterms.bibliographicCitation | Femat, R., Ruiz-Velázquez, E., Quiroz, G. Weighting restriction for intravenous insulin delivery on T1DM patient via H∞ control (2009) IEEE Transactions on Automation Science and Engineering, 6 (2), art. no. 4782992, pp. 239-247. Cited 33 times. http://www.ieee.org/t-ase doi: 10.1109/TASE.2008.2009089 | spa |
dcterms.bibliographicCitation | Freeman, R.A., Kokotovi, P. (2009) Robust Nonlinear Control Design, p. 255. Cited 909 times. Birkhäuser, Boston | spa |
dcterms.bibliographicCitation | Garcia-Gabin, W., Jacobsen, E.W. Multilevel model based glucose control for type-1 diabetes patients (2013) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, art. no. 6610401, pp. 3917-3920. Cited 3 times. ISBN: 978-145770216-7 doi: 10.1109/EMBC.2013.6610401 | spa |
dcterms.bibliographicCitation | Hashimoto, S., Noguchi, C.C.Y., Furutani, E. Postprandial blood glucose control in type 1 diabetes for carbohydrates with varying glycemic index foods (2014) 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, art. no. 6944706, pp. 4835-4838. Cited 4 times. ISBN: 978-142447929-0 doi: 10.1109/EMBC.2014.6944706 | spa |
dcterms.bibliographicCitation | Huyett, L.M., Dassau, E., Zisser, H.C., Doyle, F.J. Glucose Sensor Dynamics and the Artificial Pancreas: The Impact of Lag on Sensor Measurement and Controller Performance (2018) IEEE Control Systems, 38 (1), art. no. 8263452, pp. 30-46. Cited 21 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766322 | spa |
dcterms.bibliographicCitation | (2009) Diabetes Atlas, pp. 1-527. Cited 1101 times. International Diabetes Federation, Brussels, 2-930229-80-2 | spa |
dcterms.bibliographicCitation | Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B.J., Jacobsen, L.M., (...), Lernmark, A. Type 1 diabetes mellitus (2017) Nature Reviews Disease Primers, 3, art. no. 17016. Cited 233 times. http://www.nature.com/nrdp/ doi: 10.1038/nrdp.2017.16 | spa |
dcterms.bibliographicCitation | Kirk, D.E. (1970) Optimal Control Theory: An Introduction, p. 564. Cited 2385 times. Springer-Verlag, Austin, TX | spa |
dcterms.bibliographicCitation | Laguna Sanz, A.J., Doyle, F.J., Dassau, E. An Enhanced Model Predictive Control for the Artificial Pancreas Using a Confidence Index Based on Residual Analysis of Past Predictions (Open Access) (2017) Journal of Diabetes Science and Technology, 11 (3), pp. 537-544. Cited 15 times. http://dst.sagepub.com/content/by/year doi: 10.1177/1932296816680632 | spa |
dcterms.bibliographicCitation | Leon, B.S., Alanis, A.Y., Sanchez, E.N., Ornelas-Tellez, F., Ruiz-Velazquez, E. Neural Inverse Optimal Control via Passivity for Subcutaneous Blood Glucose Regulation in Type 1 Diabetes Mellitus Patients (2014) Intelligent Automation and Soft Computing, 20 (2), pp. 279-295. Cited 5 times. doi: 10.1080/10798587.2014.891307 | spa |
dcterms.bibliographicCitation | Liu, B., Ying, H. Analysis of the islets-based glucose control system involving the nonlinear glucose-insulin metabolism model (2015) 2015 IEEE International Conference on Information and Automation, ICIA 2015 - In conjunction with 2015 IEEE International Conference on Automation and Logistics, art. no. 7279683, pp. 2373-2378. Cited 2 times. ISBN: 978-146739104-7 doi: 10.1109/ICInfA.2015.7279683 | spa |
dcterms.bibliographicCitation | Magni, L., Raimondo, D.M., Dalla Man, C., Breton, M., Patek, S., De Nicolao, G., Cobelli, C., (...), Kovatchev, B.P. Evaluating the efficacy of closed-loop glucose regulation via control-variability grid analysis (Open Access) (2008) Journal of Diabetes Science and Technology, 2 (4), pp. 630-635. Cited 150 times. http://dst.sagepub.com/content/by/year doi: 10.1177/193229680800200414 | spa |
dcterms.bibliographicCitation | Dalla Man, C., Rizza, R.A., Cobelli, C. Meal simulation model of the glucose-insulin system (2007) IEEE Transactions on Biomedical Engineering, 54 (10), pp. 1740-1749. Cited 557 times. doi: 10.1109/TBME.2007.893506 | spa |
dcterms.bibliographicCitation | Dalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C. The UVA/PADOVA type 1 diabetes simulator: New features (Open Access) (2014) Journal of Diabetes Science and Technology, 8 (1), pp. 26-34. Cited 304 times. doi: 10.1177/1932296813514502 | spa |
dcterms.bibliographicCitation | Messori, M., Ellis, M., Cobelli, C., Christofides, P.D., Magni, L. Improved postprandial glucose control with a customized Model Predictive Controller (2015) Proceedings of the American Control Conference, 2015-July, art. no. 7172136, pp. 5108-5115. Cited 18 times. ISBN: 978-147998684-2 doi: 10.1109/ACC.2015.7172136 | spa |
dcterms.bibliographicCitation | Messori, M., Paolo Incremona, G., Cobelli, C., Magni, L. Individualized model predictive control for the artificial pancreas: In silico evaluation of closed-loop glucose control (Open Access) (2018) IEEE Control Systems, 38 (1), art. no. 8263475, pp. 86-104. Cited 35 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766314 | spa |
dcterms.bibliographicCitation | Morales-Contreras, J., Ruiz-Velazquez, E., Garcia-Rodriguez, J.A. Robust glucose control via μ-synthesis in type 1 diabetes mellitus (2017) 2017 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2017, 2018-January, pp. 1-6. Cited 4 times. ISBN: 978-153860819-7 doi: 10.1109/ROPEC.2017.8261671 | spa |
dcterms.bibliographicCitation | Ohsawa, T., Bloch, A.M., Leok, M. Discrete Hamilton-Jacobi theory and discrete optimal control (Open Access) (2010) Proceedings of the IEEE Conference on Decision and Control, art. no. 5717665, pp. 5438-5443. Cited 31 times. ISBN: 978-142447745-6 doi: 10.1109/CDC.2010.5717665 | spa |
dcterms.bibliographicCitation | Ornelas, F., Sanchez, E.N., Loukianov, A.G. Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach (2011) Proceedings of the IEEE International Conference on Control Applications, art. no. 6044461, pp. 1431-1436. Cited 24 times. ISBN: 978-145771062-9 doi: 10.1109/CCA.2011.6044461 | spa |
dcterms.bibliographicCitation | Quintero-Manriquez, E., Sanchez, E.N., Harley, R.G., Li, S., Felix, R.A. Neural Sliding Mode Control for Induction Motors Using Rapid Control Prototyping (Open Access) (2017) IFAC-PapersOnLine, 50 (1), pp. 9625-9630. Cited 4 times. http://www.journals.elsevier.com/ifac-papersonline/ doi: 10.1016/j.ifacol.2017.08.1711 | spa |
dcterms.bibliographicCitation | Rios, Y.Y., García-Rodríguez, J.A., Sánchez, O.D., Sanchez, E.N., Alanis, A.Y., Ruiz-Velázquez, E., Arana-Daniel, N. Inverse Optimal Control Using A Neural Multi-Step Predictor for T1DM Treatment (2018) Proceedings of the International Joint Conference on Neural Networks, 2018-July, art. no. 8489197. Cited 5 times. ISBN: 978-150906014-6 doi: 10.1109/IJCNN.2018.8489197 | spa |
dcterms.bibliographicCitation | Romero-Aragon, J.C., Sanchez, E.N., Alanis, A.Y. Glucose level regulation for diabetes mellitus type 1 patients using FPGA neural inverse optimal control (2014) IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - CICA 2014: 2014 IEEE Symposium on Computational Intelligence in Control and Automation, Proceedings, art. no. 7013245. Cited 6 times. ISBN: 978-147994531-3 doi: 10.1109/CICA.2014.7013245 | spa |
dcterms.bibliographicCitation | Rovithakis, G.A., Christodoulou, M.A. (2000) Adaptive Control With Recurrent High-Order Neural Networks: Theory and Industrial Applications, p. 196. Cited 309 times. Springer, London | spa |
dcterms.bibliographicCitation | Ruiz-Velázquez, E., Femat, R., Campos-Delgado, D.U. Blood glucose control for type I diabetes mellitus: A robust tracking H∞ problem (2004) Control Engineering Practice, 12 (9), pp. 1179-1195. Cited 139 times. doi: 10.1016/j.conengprac.2003.12.004 | spa |
dcterms.bibliographicCitation | Sanchez, E.N., Ornelas-Tellez, F. Discrete-time inverse optimal control for nonlinear systems (2017) Discrete-Time Inverse Optimal Control for Nonlinear Systems, pp. 1-232. Cited 20 times. http://www.tandfebooks.com/doi/book/10.1201/b14779 ISBN: 978-146658088-6; 978-146658087-9 doi: 10.1201/b14779 | spa |
dcterms.bibliographicCitation | Sanchez, E.N., Alanis, A.Y., Loukianov, A.G. (2008) Discrete-Time High Order Neural Control: Trained With Kalman Filtering, 112, p. 116. Springer Science & Business Media, Berlin | spa |
dcterms.bibliographicCitation | Song, Yongkyu, Grizzle, Jessy W. Extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems (1992) Proceedings of the American Control Conference, 4, pp. 3365-3369. Cited 73 times. ISBN: 0780302109; 978-078030210-5 doi: 10.23919/acc.1992.4792775 | spa |
dcterms.bibliographicCitation | Takagi, T., Sugeno, M. Fuzzy Identification of Systems and Its Applications to Modeling and Control (1985) IEEE Transactions on Systems, Man and Cybernetics, SMC-15 (1), pp. 116-132. Cited 14751 times. doi: 10.1109/TSMC.1985.6313399 View at Publisher | spa |
dcterms.bibliographicCitation | Turksoy, K., Littlejohn, E., Cinar, A. Multimodule, Multivariable Artificial Pancreas for Patients with Type 1 Diabetes: Regulating Glucose Concentration under Challenging Conditions (2018) IEEE Control Systems, 38 (1), art. no. 8263478, pp. 105-124. Cited 16 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766326 | spa |
dcterms.bibliographicCitation | Wang, Y., Xie, H., Jiang, X., Liu, B. Intelligent closed-loop insulin delivery systems for ICU patients (2014) IEEE Journal of Biomedical and Health Informatics, 18 (1), art. no. 6542650, pp. 290-299. Cited 11 times. doi: 10.1109/JBHI.2013.2269699 | spa |
dcterms.bibliographicCitation | (2016) Global Report on Diabetes, pp. 1-88. Cited 2674 times. WHO, World Health Organization, Geneva | spa |
datacite.rights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/bookPart | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1016/B978-0-12-817461-6.00001-9 | |
dc.subject.keywords | Fuzzy inference | spa |
dc.subject.keywords | Inverse optimal control | spa |
dc.subject.keywords | Recurrent high-order neural network | spa |
dc.subject.keywords | Simulator | spa |
dc.subject.keywords | Type 1 diabetes mellitus | spa |
dc.subject.keywords | Uva/Padova | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_3248 | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_3248 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.