Mostrar el registro sencillo del ítem

dc.contributor.authorAlanis, Alma Y.
dc.contributor.authorRios, Y. Yuliana
dc.contributor.authorGarcía Rodríguez, J. A.
dc.contributor.authorSanchez, Edgar N.
dc.contributor.authorRuíz-Velázquez, E.
dc.contributor.authorPardo García, Aldo
dc.date.accessioned2021-02-08T17:53:14Z
dc.date.available2021-02-08T17:53:14Z
dc.date.issued2020
dc.date.submitted2021-02-08
dc.identifier.citationAlanis, A., Rios, Y., García-Rodríguez, J., Sanchez, E., Ruiz-Velázquez, E. and Garcia, A., 2020. Neuro-fuzzy inverse optimal control incorporating a multistep predictor as applied to T1DM patients. Control Applications for Biomedical Engineering Systems, pp.1-24.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9960
dc.description.abstractEmerging technologies seek to provide effective solutions to the most severe health problems such as type 1 diabetes mellitus (T1DM). In fact, the number of diabetics around the world has increased as well as the mortality rate associated with this condition. T1DM is caused by an autoimmune failure which disables the pancreas to produce insulin; therefore, glucose is not correctly metabolized to be used as efficient energy. Consequently, the most important fact is to keep the patient's blood glucose level within normal ranges in order to avoid long-term complications. Recently, engineering innovative approaches based on intelligent systems such as artificial neural networks have been proposed for control in biomedical systems. In this work, a novel neuro-fuzzy control scheme for blood glucose regulation in virtual T1DM patients is proposed. The glucose-insulin dynamics is modeled by a recurrent high-order neural network and then a neural multistep predictor is incorporated in order to know the glucose behavior within a 15-min horizon; thereby, allowing the knowledge of future values to determine the convenient basal infusion insulin rate as defined by the fuzzy membership functions. Test using the well-known Uva/Padova simulator illustrated that the proposed neuro-fuzzy controller maintains normoglycemia in virtual populations of adults, adolescents, and children digressing from two other neuro control approaches. Thus, intelligent systems based on neural networks offer enormous potential for health improvement of T1DM patients. The present contribution illustrates very encouraging results to closed-loop glucose level regulation regarding the autonomous artificial pancreas.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceControl Applications for Biomedical Engineering Systems 2020, Pages 1-24spa
dc.titleNeuro-fuzzy inverse optimal control incorporating a multistep predictor as applied to T1DM patientsspa
dcterms.bibliographicCitationAlanis, A.Y., Sanchez, E.N., Loukianov, A.G. Discrete-time adaptive backstepping nonlinear control via high-order neural networks (2007) IEEE Transactions on Neural Networks, 18 (4), pp. 1185-1195. Cited 130 times. doi: 10.1109/TNN.2007.899170spa
dcterms.bibliographicCitationAlmobaied, M., Eksin, I., Guzelkaya, M. Inverse optimal controller based on extended Kalman filter for discrete-time nonlinear systems (2018) Optimal Control Applications and Methods, 39 (1), pp. 19-34. Cited 11 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1514 doi: 10.1002/oca.2331spa
dcterms.bibliographicCitationBamgbose, S.O., Li, X., Qian, L. Closed loop control of blood glucose level with neural network predictor for diabetic patients (2017) 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services, Healthcom 2017, 2017-December, pp. 1-6. Cited 3 times. ISBN: 978-150906704-6 doi: 10.1109/HealthCom.2017.8210817spa
dcterms.bibliographicCitationBasar, T., Olsder, G.J. (1999) Dynamic Noncooperative Game Theory, p. 526. Cited 2808 times. Society for Industrial and Applied Mathematics, New Brunswick, NJspa
dcterms.bibliographicCitationBatora, V., Tarnik, M., Murgas, J., Schmidt, S., Norgaard, K., Poulsen, N.K., Madsen, H., (...), Jørgensen, J.B. Bihormonal control of blood glucose in people with type 1 diabetes (2015) 2015 European Control Conference, ECC 2015, art. no. 7330520, pp. 25-30. Cited 6 times. ISBN: 978-395242693-7 doi: 10.1109/ECC.2015.7330520spa
dcterms.bibliographicCitationBequette, B.W., Cameron, F., Buckingham, B.A., Maahs, D.M., Lum, J. Overnight Hypoglycemia and Hyperglycemia Mitigation for Individuals with Type 1 Diabetes: How Risks Can Be Reduced (2018) IEEE Control Systems, 38 (1), art. no. 8263423, pp. 125-134. Cited 16 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2767119spa
dcterms.bibliographicCitationBondia, J., Romero-Vivo, S., Ricarte, B., Diez, J.L. Insulin Estimation and Prediction: A Review of the Estimation and Prediction of Subcutaneous Insulin Pharmacokinetics in Closed-Loop Glucose Control (Open Access) (2018) IEEE Control Systems, 38 (1), art. no. 8263487, pp. 47-66. Cited 23 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766312spa
dcterms.bibliographicCitationChen, P.-A., Chang, L.-C., Chang, F.-J. Reinforced recurrent neural networks for multi-step-ahead flood forecasts (2013) Journal of Hydrology, 497, pp.spa
dcterms.bibliographicCitationCinar, A. Artificial Pancreas Systems: An Introduction to the Special Issue (Open Access) (2018) IEEE Control Systems, 38 (1), art. no. 8263484, pp. 26-29. Cited 17 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766321spa
dcterms.bibliographicCitationColmegna, P., Sánchez Peña, R.S., Gondhalekar, R., Dassau, E., Doyle, F.J. Reducing risks in type 1 diabetes using H∞ Control (2014) IEEE Transactions on Biomedical Engineering, 61 (12), art. no. 6851161, pp. 2939-2947. Cited 33 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?reload=true&punumber=10 doi: 10.1109/TBME.2014.2336772spa
dcterms.bibliographicCitationEl Fathi, A., Raef Smaoui, M., Gingras, V., Boulet, B., Haidar, A. The Artificial Pancreas and Meal Control: An Overview of Postprandial Glucose Regulation in Type 1 Diabetes (2018) IEEE Control Systems, 38 (1), art. no. 8263488, pp. 67-85. Cited 33 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766323spa
dcterms.bibliographicCitationFemat, R., Ruiz-Velázquez, E., Quiroz, G. Weighting restriction for intravenous insulin delivery on T1DM patient via H∞ control (2009) IEEE Transactions on Automation Science and Engineering, 6 (2), art. no. 4782992, pp. 239-247. Cited 33 times. http://www.ieee.org/t-ase doi: 10.1109/TASE.2008.2009089spa
dcterms.bibliographicCitationFreeman, R.A., Kokotovi, P. (2009) Robust Nonlinear Control Design, p. 255. Cited 909 times. Birkhäuser, Bostonspa
dcterms.bibliographicCitationGarcia-Gabin, W., Jacobsen, E.W. Multilevel model based glucose control for type-1 diabetes patients (2013) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, art. no. 6610401, pp. 3917-3920. Cited 3 times. ISBN: 978-145770216-7 doi: 10.1109/EMBC.2013.6610401spa
dcterms.bibliographicCitationHashimoto, S., Noguchi, C.C.Y., Furutani, E. Postprandial blood glucose control in type 1 diabetes for carbohydrates with varying glycemic index foods (2014) 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, art. no. 6944706, pp. 4835-4838. Cited 4 times. ISBN: 978-142447929-0 doi: 10.1109/EMBC.2014.6944706spa
dcterms.bibliographicCitationHuyett, L.M., Dassau, E., Zisser, H.C., Doyle, F.J. Glucose Sensor Dynamics and the Artificial Pancreas: The Impact of Lag on Sensor Measurement and Controller Performance (2018) IEEE Control Systems, 38 (1), art. no. 8263452, pp. 30-46. Cited 21 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766322spa
dcterms.bibliographicCitation(2009) Diabetes Atlas, pp. 1-527. Cited 1101 times. International Diabetes Federation, Brussels, 2-930229-80-2spa
dcterms.bibliographicCitationKatsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B.J., Jacobsen, L.M., (...), Lernmark, A. Type 1 diabetes mellitus (2017) Nature Reviews Disease Primers, 3, art. no. 17016. Cited 233 times. http://www.nature.com/nrdp/ doi: 10.1038/nrdp.2017.16spa
dcterms.bibliographicCitationKirk, D.E. (1970) Optimal Control Theory: An Introduction, p. 564. Cited 2385 times. Springer-Verlag, Austin, TXspa
dcterms.bibliographicCitationLaguna Sanz, A.J., Doyle, F.J., Dassau, E. An Enhanced Model Predictive Control for the Artificial Pancreas Using a Confidence Index Based on Residual Analysis of Past Predictions (Open Access) (2017) Journal of Diabetes Science and Technology, 11 (3), pp. 537-544. Cited 15 times. http://dst.sagepub.com/content/by/year doi: 10.1177/1932296816680632spa
dcterms.bibliographicCitationLeon, B.S., Alanis, A.Y., Sanchez, E.N., Ornelas-Tellez, F., Ruiz-Velazquez, E. Neural Inverse Optimal Control via Passivity for Subcutaneous Blood Glucose Regulation in Type 1 Diabetes Mellitus Patients (2014) Intelligent Automation and Soft Computing, 20 (2), pp. 279-295. Cited 5 times. doi: 10.1080/10798587.2014.891307spa
dcterms.bibliographicCitationLiu, B., Ying, H. Analysis of the islets-based glucose control system involving the nonlinear glucose-insulin metabolism model (2015) 2015 IEEE International Conference on Information and Automation, ICIA 2015 - In conjunction with 2015 IEEE International Conference on Automation and Logistics, art. no. 7279683, pp. 2373-2378. Cited 2 times. ISBN: 978-146739104-7 doi: 10.1109/ICInfA.2015.7279683spa
dcterms.bibliographicCitationMagni, L., Raimondo, D.M., Dalla Man, C., Breton, M., Patek, S., De Nicolao, G., Cobelli, C., (...), Kovatchev, B.P. Evaluating the efficacy of closed-loop glucose regulation via control-variability grid analysis (Open Access) (2008) Journal of Diabetes Science and Technology, 2 (4), pp. 630-635. Cited 150 times. http://dst.sagepub.com/content/by/year doi: 10.1177/193229680800200414spa
dcterms.bibliographicCitationDalla Man, C., Rizza, R.A., Cobelli, C. Meal simulation model of the glucose-insulin system (2007) IEEE Transactions on Biomedical Engineering, 54 (10), pp. 1740-1749. Cited 557 times. doi: 10.1109/TBME.2007.893506spa
dcterms.bibliographicCitationDalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C. The UVA/PADOVA type 1 diabetes simulator: New features (Open Access) (2014) Journal of Diabetes Science and Technology, 8 (1), pp. 26-34. Cited 304 times. doi: 10.1177/1932296813514502spa
dcterms.bibliographicCitationMessori, M., Ellis, M., Cobelli, C., Christofides, P.D., Magni, L. Improved postprandial glucose control with a customized Model Predictive Controller (2015) Proceedings of the American Control Conference, 2015-July, art. no. 7172136, pp. 5108-5115. Cited 18 times. ISBN: 978-147998684-2 doi: 10.1109/ACC.2015.7172136spa
dcterms.bibliographicCitationMessori, M., Paolo Incremona, G., Cobelli, C., Magni, L. Individualized model predictive control for the artificial pancreas: In silico evaluation of closed-loop glucose control (Open Access) (2018) IEEE Control Systems, 38 (1), art. no. 8263475, pp. 86-104. Cited 35 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766314spa
dcterms.bibliographicCitationMorales-Contreras, J., Ruiz-Velazquez, E., Garcia-Rodriguez, J.A. Robust glucose control via μ-synthesis in type 1 diabetes mellitus (2017) 2017 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2017, 2018-January, pp. 1-6. Cited 4 times. ISBN: 978-153860819-7 doi: 10.1109/ROPEC.2017.8261671spa
dcterms.bibliographicCitationOhsawa, T., Bloch, A.M., Leok, M. Discrete Hamilton-Jacobi theory and discrete optimal control (Open Access) (2010) Proceedings of the IEEE Conference on Decision and Control, art. no. 5717665, pp. 5438-5443. Cited 31 times. ISBN: 978-142447745-6 doi: 10.1109/CDC.2010.5717665spa
dcterms.bibliographicCitationOrnelas, F., Sanchez, E.N., Loukianov, A.G. Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach (2011) Proceedings of the IEEE International Conference on Control Applications, art. no. 6044461, pp. 1431-1436. Cited 24 times. ISBN: 978-145771062-9 doi: 10.1109/CCA.2011.6044461spa
dcterms.bibliographicCitationQuintero-Manriquez, E., Sanchez, E.N., Harley, R.G., Li, S., Felix, R.A. Neural Sliding Mode Control for Induction Motors Using Rapid Control Prototyping (Open Access) (2017) IFAC-PapersOnLine, 50 (1), pp. 9625-9630. Cited 4 times. http://www.journals.elsevier.com/ifac-papersonline/ doi: 10.1016/j.ifacol.2017.08.1711spa
dcterms.bibliographicCitationRios, Y.Y., García-Rodríguez, J.A., Sánchez, O.D., Sanchez, E.N., Alanis, A.Y., Ruiz-Velázquez, E., Arana-Daniel, N. Inverse Optimal Control Using A Neural Multi-Step Predictor for T1DM Treatment (2018) Proceedings of the International Joint Conference on Neural Networks, 2018-July, art. no. 8489197. Cited 5 times. ISBN: 978-150906014-6 doi: 10.1109/IJCNN.2018.8489197spa
dcterms.bibliographicCitationRomero-Aragon, J.C., Sanchez, E.N., Alanis, A.Y. Glucose level regulation for diabetes mellitus type 1 patients using FPGA neural inverse optimal control (2014) IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - CICA 2014: 2014 IEEE Symposium on Computational Intelligence in Control and Automation, Proceedings, art. no. 7013245. Cited 6 times. ISBN: 978-147994531-3 doi: 10.1109/CICA.2014.7013245spa
dcterms.bibliographicCitationRovithakis, G.A., Christodoulou, M.A. (2000) Adaptive Control With Recurrent High-Order Neural Networks: Theory and Industrial Applications, p. 196. Cited 309 times. Springer, Londonspa
dcterms.bibliographicCitationRuiz-Velázquez, E., Femat, R., Campos-Delgado, D.U. Blood glucose control for type I diabetes mellitus: A robust tracking H∞ problem (2004) Control Engineering Practice, 12 (9), pp. 1179-1195. Cited 139 times. doi: 10.1016/j.conengprac.2003.12.004spa
dcterms.bibliographicCitationSanchez, E.N., Ornelas-Tellez, F. Discrete-time inverse optimal control for nonlinear systems (2017) Discrete-Time Inverse Optimal Control for Nonlinear Systems, pp. 1-232. Cited 20 times. http://www.tandfebooks.com/doi/book/10.1201/b14779 ISBN: 978-146658088-6; 978-146658087-9 doi: 10.1201/b14779spa
dcterms.bibliographicCitationSanchez, E.N., Alanis, A.Y., Loukianov, A.G. (2008) Discrete-Time High Order Neural Control: Trained With Kalman Filtering, 112, p. 116. Springer Science & Business Media, Berlinspa
dcterms.bibliographicCitationSong, Yongkyu, Grizzle, Jessy W. Extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems (1992) Proceedings of the American Control Conference, 4, pp. 3365-3369. Cited 73 times. ISBN: 0780302109; 978-078030210-5 doi: 10.23919/acc.1992.4792775spa
dcterms.bibliographicCitationTakagi, T., Sugeno, M. Fuzzy Identification of Systems and Its Applications to Modeling and Control (1985) IEEE Transactions on Systems, Man and Cybernetics, SMC-15 (1), pp. 116-132. Cited 14751 times. doi: 10.1109/TSMC.1985.6313399 View at Publisherspa
dcterms.bibliographicCitationTurksoy, K., Littlejohn, E., Cinar, A. Multimodule, Multivariable Artificial Pancreas for Patients with Type 1 Diabetes: Regulating Glucose Concentration under Challenging Conditions (2018) IEEE Control Systems, 38 (1), art. no. 8263478, pp. 105-124. Cited 16 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766326spa
dcterms.bibliographicCitationWang, Y., Xie, H., Jiang, X., Liu, B. Intelligent closed-loop insulin delivery systems for ICU patients (2014) IEEE Journal of Biomedical and Health Informatics, 18 (1), art. no. 6542650, pp. 290-299. Cited 11 times. doi: 10.1109/JBHI.2013.2269699spa
dcterms.bibliographicCitation(2016) Global Report on Diabetes, pp. 1-88. Cited 2674 times. WHO, World Health Organization, Genevaspa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/bookPartspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1016/B978-0-12-817461-6.00001-9
dc.subject.keywordsFuzzy inferencespa
dc.subject.keywordsInverse optimal controlspa
dc.subject.keywordsRecurrent high-order neural networkspa
dc.subject.keywordsSimulatorspa
dc.subject.keywordsType 1 diabetes mellitusspa
dc.subject.keywordsUva/Padovaspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_3248spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_3248spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.