Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.contributor.authorMartin Serra, Federico
dc.contributor.authorHernández, Jesus C.
dc.contributor.authorMolina-Cabrera, Alexander
dc.date.accessioned2021-02-08T15:37:51Z
dc.date.available2021-02-08T15:37:51Z
dc.date.issued2020-10-14
dc.date.submitted2021-02-03
dc.identifier.citationMontoya, O.D.; Gil-González, W.; Serra, F.M.; Hernández, J.C.; Molina-Cabrera, A. A Second-Order Cone Programming Reformulation of the Economic Dispatch Problem of BESS for Apparent Power Compensation in AC Distribution Networks. Electronics 2020, 9, 1677. https://doi.org/10.3390/electronics9101677spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9947
dc.description.abstractThe problem associated with economic dispatch of battery energy storage systems (BESSs) in alternating current (AC) distribution networks is addressed in this paper through convex optimization. The exact nonlinear programming model that represents the economic dispatch problem is transformed into a second-order cone programming (SOCP) model, thereby guaranteeing the global optimal solution-finding due to the conic (i.e., convex) structure of the solution space. The proposed economic dispatch model of the BESS considers the possibility of injecting/absorbing active and reactive power, in turn, enabling the dynamical apparent power compensation in the distribution network. A basic control design based on passivity-based control theory is introduced in order to show the possibility of independently controlling both powers (i.e., active and reactive). The computational validation of the proposed SOCP model in a medium-voltage test feeder composed of 33 nodes demonstrates the efficiency of convex optimization for solving nonlinear programming models via conic approximations. All numerical validations have been carried out in the general algebraic modeling system.spa
dc.format.extent23 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics 2020, 9(10), 1677spa
dc.titleA second-order cone programming reformulation of the economic dispatch problem of bess for apparent power compensation in ac distribution networksspa
dcterms.bibliographicCitationSedighizadeh, M.; Esmaili, M.; Jamshidi, A.; Ghaderi, M.H. Stochastic multi-objective economic-environmental energy and reserve scheduling of microgrids considering battery energy storage system. Int. J. Electr. Power Energy Syst. 2019, 106, 1–16.spa
dcterms.bibliographicCitationKumar, A.; Meena, N.K.; Singh, A.R.; Deng, Y.; He, X.; Bansal, R.; Kumar, P. Strategic integration of battery energy storage systems with the provision of distributed ancillary services in active distribution systems. Appl. Energy 2019, 253, 113503.spa
dcterms.bibliographicCitationTan, X.; Wu, Y.; Tsang, D.H.K. Pareto Optimal Operation of Distributed Battery Energy Storage Systems for Energy Arbitrage under Dynamic Pricing. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 2103–2115.spa
dcterms.bibliographicCitationMehrjerdi, H. Simultaneous load leveling and voltage profile improvement in distribution networks by optimal battery storage planning. Energy 2019, 181, 916–926.spa
dcterms.bibliographicCitationGrisales-Noreña, L.; Montoya, O.D.; Gil-González, W. Integration of energy storage systems in AC distribution networks: Optimal location, selecting, and operation approach based on genetic algorithms. J. Energy Storage 2019, 25, 100891.spa
dcterms.bibliographicCitationDulău, L.I.; Abrudean, M.; Bică, D. Smart Grid Economic Dispatch. Procedia Technol. 2016, 22, 740–745.spa
dcterms.bibliographicCitationLi, B.; Wang, Y.; Li, J.; Cao, S. A Fully Distributed Approach for Economic Dispatch Problem of Smart Grid. Energies 2018, 11, 1993.spa
dcterms.bibliographicCitationYang, B.; Wang, J.; Zhang, X.; Wang, J.; Shu, H.; Li, S.; He, T.; Lan, C.; Yu, T. Applications of battery/supercapacitor hybrid energy storage systems for electric vehicles using perturbation observer based robust control. J. Power Sources 2020, 448, 227444.spa
dcterms.bibliographicCitationMansour, M.; Mansouri, M.; Bendoukha, S.; Mimouni, M. A grid-connected variable-speed wind generator driving a fuzzy-controlled PMSG and associated to a flywheel energy storage system. Electr. Power Syst. Res. 2020, 180, 106137.spa
dcterms.bibliographicCitationVyas, G.; Dondapati, R.S. Superconducting Magnetic Energy Storage (SMES). In High-Temperature Superconducting Devices for Energy Applications; CRC Press: Boca Raton, FL, USA, 2020.spa
dcterms.bibliographicCitationLuo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536.spa
dcterms.bibliographicCitationLai, C.S.; Locatelli, G.; Pimm, A.; Wu, X.; Lai, L.L. A review on long-term electrical power system modeling with energy storage. J. Clean. Prod. 2020, 280, 124298.spa
dcterms.bibliographicCitationEssallah, S.; Khedher, A.; Bouallegue, A. Integration of distributed generation in electrical grid: Optimal placement and sizing under different load conditions. Comput. Electr. Eng. 2019, 79, 106461.spa
dcterms.bibliographicCitationOlaszi, B.D.; Ladanyi, J. Comparison of different discharge strategies of grid-connected residential PV systems with energy storage in perspective of optimal battery energy storage system sizing. Renew. Sustain. Energy Rev. 2017, 75, 710–718.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710.spa
dcterms.bibliographicCitationKumar, M. Social, Economic, and Environmental Impacts of Renewable Energy Resources. In Wind Solar Hybrid Renewable Energy System; IntechOpen: London, UK, 2020.spa
dcterms.bibliographicCitationVezmar, S.; Spajic, A.; Topic, D.; Sljivac, D.; Jozsa, L. Positive and Negative Impacts of Renewable Energy Sources. Int. J. Electr. Comput. Eng. Syst. 2014, 5, 15–23.spa
dcterms.bibliographicCitationStrunz, K.; Abbasi, E.; Huu, D.N. DC microgrid for wind and solar power integration. IEEE Trans. Emerg. Sel. Top. Power Electron. 2013, 2, 115–126.spa
dcterms.bibliographicCitationEltigani, D.; Masri, S. Challenges of integrating renewable energy sources to smart grids: A review. Renew. Sust. Energy Rev. 2015, 52, 770–780.spa
dcterms.bibliographicCitationSchiel, C.; Lind, P.G.; Maass, P. Resilience of electricity grids against transmission line overloads under wind power injection at different nodes. Sci. Rep. 2017, 7, 1–11.spa
dcterms.bibliographicCitationCiupageanu, D.A.; Barelli, L.; Lazaroiu, G. Real-time stochastic power management strategies in hybrid renewable energy systems: A review of key applications and perspectives. Electr. Power Syst. Res. 2020, 187, 106497.spa
dcterms.bibliographicCitationAbid, S.; Alghamdi, T.A.; Haseeb, A.; Wadud, Z.; Ahmed, A.; Javaid, N. An Economical Energy Management Strategy for Viable Microgrid Modes. Electronics 2019, 8, 1442.spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8.spa
dcterms.bibliographicCitationKim, S.; Kim, J.; Cho, K.; Byeon, G. Optimal Operation Control for Multiple BESSs of a Large-Scale Customer Under Time-Based Pricing. IEEE Trans. Power Syst. 2018, 33, 803–816.spa
dcterms.bibliographicCitationMontoya, O.D.; Grajales, A.; Garces, A.; Castro, C.A. Distribution Systems Operation Considering Energy Storage Devices and Distributed Generation. IEEE Lat. Am. Trans. 2017, 15, 890–900.spa
dcterms.bibliographicCitationHome-Ortiz, J.M.; Pourakbari-Kasmaei, M.; Lehtonen, M.; Mantovani, J.R.S. Optimal location-allocation of storage devices and renewable-based DG in distribution systems. Electr. Power Syst. Res. 2019, 172, 11–21.spa
dcterms.bibliographicCitationMehrjerdi, H.; Hemmati, R. Modeling and optimal scheduling of battery energy storage systems in electric power distribution networks. J. Clean. Prod. 2019, 234, 810–821.spa
dcterms.bibliographicCitationNiu, J.; Tian, Z.; Lu, Y.; Zhao, H. Flexible dispatch of a building energy system using building thermal storage and battery energy storage. Appl. Energy 2019, 243, 274–287.spa
dcterms.bibliographicCitationGimelli, A.; Mottola, F.; Muccillo, M.; Proto, D.; Amoresano, A.; Andreotti, A.; Langella, G. Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service. Appl. Energy 2019, 242, 974–993.spa
dcterms.bibliographicCitationLuna, A.C.; Diaz, N.L.; Andrade, F.; Graells, M.; Guerrero, J.M.; Vasquez, J.C. Economic power dispatch of distributed generators in a grid-connected microgrid. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 1–5 June 2015.spa
dcterms.bibliographicCitationMolzahn, D.K. Identifying and Characterizing Non-Convexities in Feasible Spaces of Optimal Power Flow Problems. IEEE Trans. Circuits Syst. II 2018, 65, 672–676.spa
dcterms.bibliographicCitationBusemann, H. Note on a theorem on convex sets. Matematisk Tidsskrift. B 1947, 32–34.spa
dcterms.bibliographicCitationMeng, J.; Cao, P.; Huang, J.; Lin, H.; Chen, Y.; Cao, R. Second-order cone programming formulation of discontinuous deformation analysis. Int. J. Numer. Methods Eng. 2019, 118, 243–257.spa
dcterms.bibliographicCitationRenegar, J. Hyperbolic Programs, and Their Derivative Relaxations. Found. Comut. Math. 2006, 6, 59–79.spa
dcterms.bibliographicCitationFarivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification-Part I. IEEE Trans. Power Syst. 2013, 28, 2554–2564.spa
dcterms.bibliographicCitationChiou, G.J.; Chen, J.Y.; Chen, T.C.; Chen, B.X. Application of D-Q axis transformation control strategy for three-phase AC/DC converter. In Proceedings of the 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), Kitakyushu, Japan, 22–25 April 2013.spa
dcterms.bibliographicCitationRymarski, B.; Dyga, D. Passivity-Based Control Design Methodology for UPS Systems. Energies 2019, 12, 4301.spa
dcterms.bibliographicCitationMontoya, O.D.; Serra, F.M.; Angelo, C.H.D. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 2020, 9, 1352.spa
dcterms.bibliographicCitationCisneros, R.; Pirro, M.; Bergna, G.; Ortega, R.; Ippoliti, G.; Molinas, M. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters. Control Eng. Pract. 2015, 43, 109–119.spa
dcterms.bibliographicCitationFernández, L.M.; Serra, F.; Angelo, C.D.; Montoya, O.D. Control of a charging station for electric vehicles. J. Phys. Conf. Ser. 2020, 1448, 012013.spa
dcterms.bibliographicCitationRedondo-Iglesias, E.; Venet, P.; Pelissier, S. Measuring Reversible and Irreversible Capacity Losses on Lithium-Ion Batteries. In Proceedings of the 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, 17–20 October 2016; pp. 1–5.spa
dcterms.bibliographicCitationGusev, Y.P.; Subbotin, P.V. Using Battery Energy Storage Systems for Load Balancing and Reactive Power Compensation in Distribution Grids. In Proceedings of the 2019 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russian, 25–29 March 2019; pp. 1–5.spa
dcterms.bibliographicCitationBiswas, P.P.; Mallipeddi, R.; Suganthan, P.; Amaratunga, G.A. A multiobjective approach for optimal placement and sizing of distributed generators and capacitors in distribution network. Appl. Soft Comput. 2017, 60, 268–280.spa
dcterms.bibliographicCitationBiswas, P.P.; Suganthan, P.; Amaratunga, G.A. Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers. Manag. 2017, 148, 1194–1207.spa
dcterms.bibliographicCitationSultana, S.; Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system. Appl. Soft Comput. 2016, 40, 391–404.spa
dcterms.bibliographicCitationMoradi, M.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74.spa
dcterms.bibliographicCitationSultana, S.; Roy, P.K. Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 534–545.spa
dcterms.bibliographicCitationMuthukumar, K.; Jayalalitha, S. Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique. Int. J. Electr. Power Energy Syst. 2016, 78, 299–319.spa
dcterms.bibliographicCitationMoradi, M.; Abedini, M. A novel method for optimal DG units capacity and location in Microgrids. Int. J. Electr. Power Energy Syst. 2016, 75, 236–244.spa
dcterms.bibliographicCitationBayat, A.; Bagheri, A. Optimal active and reactive power allocation in distribution networks using a novel heuristic approach. Appl. Energy 2019, 233–234, 71–85.spa
dcterms.bibliographicCitationGholami, K.; Parvaneh, M.H. A mutated salp swarm algorithm for optimum allocation of active and reactive power sources in radial distribution systems. Appl. Soft Comput. 2019, 105833.spa
dcterms.bibliographicCitationKaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–617.spa
dcterms.bibliographicCitationBocanegra, S.Y.; Montoya, O.D. Heuristic Approach for Optimal Location and Sizing of Distributed Generators in AC Distribution Networks. Wseas Trans. Power Syst. 2019, 14, 113–121.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Orozco-Henao, C. Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach. Eng. Sci. Technol. Int. J. 2020.spa
dcterms.bibliographicCitationEftimov, T.; Korošec, P. A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space. Inf. Sci. 2019, 489, 255–273.spa
dcterms.bibliographicCitationBarbosa, E.B.M.; Senne, E.L.F. A Heuristic for Optimization of Metaheuristics by Means of Statistical Methods. In Proceedings of the 6th International Conference on Operations Research and Enterprise Systems, Porto, Portugal, 23–25 February 2017.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2079-9292/9/10/1677
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/electronics9101677
dc.subject.keywordsBattery energy storage systemsspa
dc.subject.keywordsEconomic dispatch problemspa
dc.subject.keywordsConvex optimizationspa
dc.subject.keywordsHyperbolic relaxation;spa
dc.subject.keywordsSecond-order cone programmingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.eissn2079-9292
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.