Mostrar el registro sencillo del ítem

dc.contributor.authorGil-González, Walter
dc.contributor.authorGarcés, A.
dc.contributor.authorCasilimas-Peña, A.
dc.contributor.authorGarrido Arévalo, Víctor Manuel
dc.contributor.authorMontoya, Oscar
dc.date.accessioned2021-02-08T14:58:48Z
dc.date.available2021-02-08T14:58:48Z
dc.date.issued2020-12-01
dc.date.submitted2021-02-03
dc.identifier.citationW. Gil-González, A. Garces, A. Casilimas-Peña, V. M. Garrido and O. Montoya, "A Convex OPF Approximation for DC Networks Considering Voltage-Dependent Load Models," 2020 IEEE ANDESCON, Quito, Ecuador, 2020, pp. 1-6, doi: 10.1109/ANDESCON50619.2020.9272042.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9941
dc.description.abstractThis paper addresses the problems of power flow and optimal power flow analysis considering voltage-dependent load models from the convex point of view. First, Taylor series expansion method is employed for linearizing the power flow equations generating a set of affine h yperplanes. S econd, the sequential quadratic programming (SQP) approach is employed for adjusting the linearization point to eliminate the voltage estimation error between the exact and proposed convex models recursively. Two voltage-dependent load models are considered in our power flow a nd o ptimal p ower fl ow pr oposals wh ich based on the exponential and polynomial models. General algebraic modeling system (GAMS) and its nonlinear optimization packages are employed for comparison purposes. Two DC-test systems with 6 and 21 nodes are used to validate the performance of the SQP proposed. The proposed SQP approach is implemented in MATLAB software with quadprog toolbox.spa
dc.format.extent6 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.source2020 IEEE ANDESCONspa
dc.titleA Convex OPF Approximation for DC Networks Considering Voltage-Dependent Load Modelsspa
dcterms.bibliographicCitationW Simpson-Porco, F. Dorfler y F. Bullo, "Sobre redes resistivas de dispositivos de potencia constante", IEEE Trans. Circuitos Syst. II Express Briefs , vol. 62, no. 8, págs.811-815, agosto de 2015.spa
dcterms.bibliographicCitationS. Parhizi, H. Lotfi, A. Khodaei and S. Bahramirad, "State of the art in research on microgrids: A review", IEEE Access, vol. 3, pp. 890-925, 2015.spa
dcterms.bibliographicCitationO. D. Montoya, L. F. Grisales-Noreña, D. González-Montoya, C. Ramos-Paja and A. Garces, "Linear power flow formulation for low-voltage DC power grids", Electr. Power Syst. Res, vol. 163, pp. 375-381, 2018.spa
dcterms.bibliographicCitationA. Garces, "Uniqueness of the power flow solutions in low voltage direct current grids", Electr. Power Syst. Res, vol. 151, no. Supplement C, pp. 149-153, 2017.spa
dcterms.bibliographicCitationN. Barabanov, R. Ortega and R. G. B. Polyak, "On existence and stability of equilibria of linear time-invariant systems with constant power loads", IEEE Trans. Circuits Syst. I Regul. Pap, vol. 63, no. 1, pp. 114-121, Jan 2016.spa
dcterms.bibliographicCitationD. Karimipour and F. R. Salmasi, "Stability Analysis of AC Microgrids With Constant Power Loads Based on Popov’s Absolute Stability Criterion", IEEE Trans. Circuits Syst. II Express Briefs, vol. 62, no. 7, pp. 696-700, July 2015.spa
dcterms.bibliographicCitationM. Su, Z. Liu, Y. Sun, H. Han and X. Hou, "Stability analysis and stabilization methods of dc microgrid with multiple parallel-connected dc–dc converters loaded by cpls", IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 132-142, Jan 2018.spa
dcterms.bibliographicCitationY. Gu, W. Li and X. He, "Passivity-based control of dc microgrid for self-disciplined stabilization", IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2623-2632, Sep. 2015.spa
dcterms.bibliographicCitationO. D. Montoya, W. Gil-González and A. Garces, "Sequential quadratic programming models for solving the OPF problem in DC grids", Electr. Power Syst. Res, vol. 169, pp. 18-23, 2019.spa
dcterms.bibliographicCitationA. Garces, "On Convergence of Newtons Method in Power Flow Study for DC Microgrids", IEEE Trans. Power Syst, pp. 1-1, 2018.spa
dcterms.bibliographicCitationO. D. Montoya, V. M. Garrido, W. Gil-González and L. Grisales-Noreãa, "Power Flow Analysis in DC Grids: Two Alternative Numerical Methods", IEEE Trans. Circuits Syst. II, pp. 1-1, 2019.spa
dcterms.bibliographicCitationO. D. Montoya, "On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs", IEEE Trans. Circuits Syst. II, pp. 1-1, 2019.spa
dcterms.bibliographicCitationJ. Li, F. Liu, Z. Wang, S. Low and S. Mei, "Optimal Power Flow in Stand-alone DC Microgrids", IEEE Trans. Power Syst, pp. 1-1, 2018.spa
dcterms.bibliographicCitationW. Gil-González, O. D. Montoya, E. Holguín, A. Garces and L. F. Grisales-Noreña, "Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model", Journal of Energy Storage, vol. 21, pp. 1-8, 2019spa
dcterms.bibliographicCitationO. D. Montoya, "Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model", IEEE Trans. Circuits Syst. II, pp. 1-1, 2018.spa
dcterms.bibliographicCitationS. Bahrami, F. Therrien, V. W. S. Wong and J. Jatskevich, "Semidefinite Relaxation of Optimal Power Flow for AC–DC Grids", IEEE Trans. Power Syst, vol. 32, no. 1, pp. 289-304, Jan 2017.spa
dcterms.bibliographicCitationM. Baradar, M. R. Hesamzadeh and M. Ghandhari, "Second-Order Cone Programming for Optimal Power Flow in VSC-Type AC-DC Grids", IEEE Trans. Power Syst, vol. 28, no. 4, pp. 4282-4291, Nov 2013.spa
dcterms.bibliographicCitationO. D. Montoya, W. Gil-González and A. Garces, "Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation", IEEE Trans. Circuits Syst. II, pp. 1-1, 2018.spa
dcterms.bibliographicCitationH. Yuan, F. Li, H. Cui, X. Lu, D. Shi and Z. Wang, "A measurement-based VSI for voltage dependent loads using angle difference between tangent lines of load and PV curves", Electr. Power Syst. Res, vol. 160, pp. 13-16, 2018.spa
dcterms.bibliographicCitationJ. R. Martí, H. Ahmadi and L. Bashualdo, "Linear Power-Flow Formulation Based on a Voltage-Dependent Load Model", IEEE Trans. Power Del, vol. 28, no. 3, pp. 1682-1690, July 2013.spa
dcterms.bibliographicCitationZ. Li, J. Yu and Q. H. Wu, "Approximate Linear Power Flow Using Logarithmic Transform of Voltage Magnitudes With Reactive Power and Transmission Loss Consideration", IEEE Trans. Power Syst, vol. 33, no. 4, pp. 4593-4603, July 2018.spa
dcterms.bibliographicCitationC. Gavriluta, I. Candela, C. Citro, A. Luna and P. Rodriguez, "Design considerations for primary control in multi-terminal VSC-HVDC grids", Electr. Power Syst. Res, vol. 122, pp. 33-41, 2015.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9272042
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1109/ANDESCON50619.2020.9272042.
dc.subject.keywordsDirect–current networksspa
dc.subject.keywordsOptimal power flow analysisspa
dc.subject.keywordsSequential quadratic programmingspa
dc.subject.keywordsTaylor’s based series expansion methodspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_8544spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.