Mostrar el registro sencillo del ítem

dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.contributor.authorPerea-Moreno, Alberto-Jesus
dc.contributor.authorPerea-Moreno, Miguel-Angel
dc.date.accessioned2021-02-08T14:53:17Z
dc.date.available2021-02-08T14:53:17Z
dc.date.issued2020-12-03
dc.date.submitted2021-02-05
dc.identifier.citationGrisales-Noreña, L.F.; Montoya, O.D.; Gil-González, W.J.; Perea-Moreno, A.-J.; Perea-Moreno, M.-A. A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors. Electronics 2020, 9, 2062. https://doi.org/10.3390/electronics9122062spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9940
dc.description.abstractThis study analyzes the numerical convergence and processing time required by several classical and new solution methods proposed in the literature to solve the power-flow problem (PF) in direct-current (DC) networks considering radial and mesh topologies. Three classical numerical methods were studied: Gauss–Jacobi, Gauss–Seidel, and Newton–Raphson. In addition, two unconventional methods were selected. They are iterative and allow solving the DC PF in radial and mesh configurations. The first method uses a Taylor series expansion and a set of decoupling equations to linearize around the desired operating point. The second method manipulates the set of non-linear equations of the DC PF to transform it into a conventional fixed-point form. Moreover, this method is used to develop a successive approximation methodology. For the particular case of radial topology, three methods based on triangular matrix formulation, graph theory, and scanning algorithms were analyzed. The main objective of this study was to identify the methods with the best performance in terms of quality of solution (i.e., numerical convergence) and processing time to solve the DC power flow in mesh and radial distribution networks. We aimed at offering to the reader a set of PF methodologies to analyze electrical DC grids. The PF performance of the analyzed solution methods was evaluated through six test feeders; all of them were employed in prior studies for the same application. The simulation results show the adequate performance of the power-flow methods reviewed in this study, and they permit the selection of the best solution method for radial and mesh structures.spa
dc.format.extent20 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics 2020, 9(12), 2062spa
dc.titleA Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errorsspa
dcterms.bibliographicCitationMontoya, O.D. On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2019.spa
dcterms.bibliographicCitationRouzbehi, K.; Heidary Yazdi, S.S.; Shariati Moghadam, N. Power Flow Control in Multi-Terminal HVDC Grids Using a Serial-Parallel DC Power Flow Controller. IEEE Access 2018, 6, 56934–56944.spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Cruz-Peragón, F.; Alcalá, G. Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization. Energies 2020, 13, 1703.spa
dcterms.bibliographicCitationMolzahn, D.K. Identifying and Characterizing Non-Convexities in Feasible Spaces of Optimal Power Flow Problems. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 672–676.spa
dcterms.bibliographicCitationLi, H.; Zhang, L.; Shen, X. A loop-analysis theory based power flow method and its linear formulation for low-voltage DC grid. Electr. Power Syst. Res. 2020, 187, 106473.spa
dcterms.bibliographicCitationSimpson-Porco, J.W.; Dörfler, F.; Bullo, F. On Resistive Networks of Constant-Power Devices. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 811–815.spa
dcterms.bibliographicCitationMontoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W.; Alcalá, G.; Hernandez-Escobedo, Q. Optimal Location and Sizing of PV Sources in DC Networks for Minimizing Greenhouse Emissions in Diesel Generators. Symmetry 2020, 12, 322.spa
dcterms.bibliographicCitationGrainger, J.; Stevenson, W. Power System Analysis; Mcgraw-Hill Series in Electrical and Computer Engineering: Power and Energy; McGraw-Hill: New York, NY, USA, 1994.spa
dcterms.bibliographicCitationKrebs, V.; Schewe, L.; Schmidt, M. Uniqueness and multiplicity of market equilibria on DC power flow networks. Eur. J. Oper. Res. 2018, 271, 165–178.spa
dcterms.bibliographicCitationMilano, F. Analogy and Convergence of Levenberg’s and Lyapunov-Based Methods for Power Flow Analysis. IEEE Trans. Power Syst. 2016, 31, 1663–1664.spa
dcterms.bibliographicCitationPapadimitriou, C.; Zountouridou, E.; Hatziargyriou, N. Review of hierarchical control in DC microgrids. Electr. Power Syst. Res. 2015, 122, 159–167.spa
dcterms.bibliographicCitationParhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the Art in Research on Microgrids: A Review. IEEE Access 2015, 3, 890–925.spa
dcterms.bibliographicCitationBarelli, L.; Bidini, G.; Pelosi, D.; Ciupageanu, D.; Cardelli, E.; Castellini, S.; Lăzăroiu, G. Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids. Energy 2020, 204, 117939.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Rivas-Trujillo, E. Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids. Energies 2020, 13, 2289.spa
dcterms.bibliographicCitationSiraj, K.; Khan, H.A. DC distribution for residential power networks A framework to analyze the impact of voltage levels on energy efficiency. Energy Rep. 2020, 6, 944–951.spa
dcterms.bibliographicCitationDuan, J.; Li, Z.; Zhou, Y.; Wei, Z. Study on the voltage level sequence of future urban DC distribution network in China: A Review. Int. J. Electr. Power Energy Syst. 2020, 117, 105640.spa
dcterms.bibliographicCitationLotfi, H.; Khodaei, A. AC Versus DC Microgrid Planning. IEEE Trans. Smart Grid 2017, 8, 296–304.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Garzon-Rivera, O.D.; Ramírez-Vanegas, C.A.; Montoya, O.D.; Ramos-Paja, C.A. Application of the backward/forward sweep method for solving the power flow problem in DC networks with radial structure. J. Phys. Conf. Ser. 2020, 1448, 012012.spa
dcterms.bibliographicCitationGonzalez-longatt, F.; Roldan, J.; Charalambous, C. Solution of ac/dc power flow on a multiterminal HVDC system: Illustrative case supergrid phase I. In Proceedings of the 2012 47th Universities Power Engineering Conference (UPEC), London, UK, 4–7 September 2012.spa
dcterms.bibliographicCitationBeerten, J.; Cole, S.; Belmans, R. Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms. IEEE Trans. Power Syst. 2012, 27, 821–829.spa
dcterms.bibliographicCitationHartani, M.; Hamouda, M.; Abdelkhalek, O.; Benabdelkader, A.; Meftouhi, A. Static-Dynamic Analysis of an LVDC Smart Microgrid for a Saharian-Isolated Areas Using ETAP/MATLAB Software. In Smart Energy Empowerment in Smart and Resilient Cities; Springer: Berlin/Heidelberg, Germany, 2019; pp. 496–505.spa
dcterms.bibliographicCitationGarces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153.spa
dcterms.bibliographicCitationGarcés, A. On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777.spa
dcterms.bibliographicCitationGarces, A.; Montoya, D.; Torres, R. Optimal power flow in multiterminal HVDC systems considering DC/DC converters. In Proceedings of the 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, 8–10 June 2016; pp. 1212–1217.spa
dcterms.bibliographicCitationLi, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506.spa
dcterms.bibliographicCitationMontoya, O.D. Numerical Approximation of the Maximum Power Consumption in DC-MGs With CPLs via an SDP Model. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 642–646.spa
dcterms.bibliographicCitationCapitanescu, F. Critical review of recent advances and further developments needed in AC optimal power flow. Electr. Power Syst. Res. 2016, 136, 57–68.spa
dcterms.bibliographicCitationMarini, A.; Mortazavi, S.; Piegari, L.; Ghazizadeh, M.S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electr. Power Syst. Res. 2019, 170, 229–243.spa
dcterms.bibliographicCitationMontoya, O.D.; Grisales-Noreña, L.F.; González-Montoya, D.; Ramos-Paja, C.; Garces, A. Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 2018, 163, 375–381.spa
dcterms.bibliographicCitationMontoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1865–1869.spa
dcterms.bibliographicCitationMontoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W. Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2019.spa
dcterms.bibliographicCitationMontoya, O.D. On the Existence of the Power Flow Solution in DC Grids with CPLs Through a Graph-Based Method. IEEE Trans. Circuits Syst. II Express Briefs 2019.spa
dcterms.bibliographicCitationGarcés, A.; Herrera, J.; Gil-González, W.; Montoya, O. Small-Signal Stability in Low-Voltage DC-Grids. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018; pp. 1–5.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454.spa
dcterms.bibliographicCitationMachado, J.E.; Griñó, R.; Barabanov, N.; Ortega, R.; Polyak, B. On Existence of Equilibria of Multi-Port Linear AC Networks With Constant-Power Loads. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2772–2782.spa
dcterms.bibliographicCitationSanchez, S.; Ortega, R.; Griño, R.; Bergna, G.; Molinas, M. Conditions for Existence of Equilibria of Systems With Constant Power Loads. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 2204–2211.spa
dcterms.bibliographicCitationBenedito, E.; del Puerto-Flores, D.; Dòria-Cerezo, A.; Scherpen, J.M. Port-Hamiltonian based Optimal Power Flow algorithm for multi-terminal DC networks. Control Eng. Pract. 2019, 83, 141–150.spa
dcterms.bibliographicCitationLagace, P.J.; Vuong, M.H.; Kamwa, I. Improving power flow convergence by Newton Raphson with a Levenberg-Marquardt method. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–6.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation. IEEE Trans. Circuits Syst. II Express Briefs 2018.spa
dcterms.bibliographicCitationGarces, A. A Linear Three-Phase Load Flow for Power Distribution Systems. IEEE Trans. Power Syst. 2016, 31, 827–828.spa
dcterms.bibliographicCitationMontoya, O.D.; Escobar, A.F.; Garrido, V.M. Power flow solution in direct current grids using the linear conjugate gradient approach. J. Phys. Conf. Ser. 2020, 1448, 012016.spa
dcterms.bibliographicCitationWang, W.; Barnes, M. Power Flow Algorithms for Multi-Terminal VSC-HVDC With Droop Control. IEEE Trans. Power Syst. 2014, 29, 1721–1730.spa
dcterms.bibliographicCitationHuang, G.; Ongsakul, W. Managing the bottlenecks in parallel Gauss-Seidel type algorithms for power flow analysis. IEEE Trans. Power Syst. 1994, 9, 677–684.spa
dcterms.bibliographicCitationZhang, H.; Vittal, V.; Heydt, G.T.; Quintero, J. A relaxed AC optimal power flow model based on a Taylor series. In Proceedings of the 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Bangalore, India, 10–13 November 2013; pp. 1–5.spa
dcterms.bibliographicCitationJesus, P.D.O.D.; Alvarez, M.; Yusta, J. Distribution power flow method based on a real quasi-symmetric matrix. Electr. Power Syst. Res. 2013, 95, 148–159.spa
dcterms.bibliographicCitationMoradi, M.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Montoya, O.D.; Grajales, A.; Hincapie, R.A.; Granada, M. Optimal Planning and Operation of Distribution Systems Considering Distributed Energy Resources and Automatic Reclosers. IEEE Lat. Am. Trans. 2018, 16, 126–134.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Gonzalez Montoya, D.; Ramos-Paja, C.A. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies 2018, 11, 1018.spa
dcterms.bibliographicCitationBaran, M.E.; Wu, F.F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 1989, 4, 1401–1407.spa
dcterms.bibliographicCitationBaran, M.E.; Wu, F.F. Optimal capacitor placement on radial distribution systems. IEEE Trans. Power Deliv. 1989, 4, 725–734.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2079-9292/9/12/2062
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/electronics9122062
dc.subject.keywordsDirect-current networkspa
dc.subject.keywordsPower-flow analysispa
dc.subject.keywordsDistribution networksspa
dc.subject.keywordsNumerical methodsspa
dc.subject.keywordsLiterature reviewspa
dc.subject.keywordsProcessing timespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.