Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, O.D.
dc.contributor.authorGil-González, Walter
dc.contributor.authorHernández, Jesus C.
dc.contributor.authorGiral-Ramírez, Diego Armando
dc.contributor.authorMedina-Quesada, A.
dc.date.accessioned2020-11-05T21:06:14Z
dc.date.available2020-11-05T21:06:14Z
dc.date.issued2020-08-27
dc.date.submitted2020-11-03
dc.identifier.citationMontoya, O.D.; Gil-González, W.; Hernández, J.C.; Giral-Ramírez, D.A.; Medina-Quesada, A. A Mixed-Integer Nonlinear Programming Model for Optimal Reconfiguration of DC Distribution Feeders. Energies 2020, 13, 4440.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9559
dc.description.abstractThis paper deals with the optimal reconfiguration problem of DC distribution networks by proposing a new mixed-integer nonlinear programming (MINLP) formulation. This MINLP model focuses on minimising the power losses in the distribution lines by reformulating the classical power balance equations through a branch-to-node incidence matrix. The general algebraic modelling system (GAMS) is chosen as a solution tool, showing in tutorial form the implementation of the proposed MINLP model in a 6-nodes test feeder with 10 candidate lines. The validation of the MINLP formulation is performed in two classical 10-nodes DC test feeders. These are typically used for power flow and optimal power flow analyses. Numerical results demonstrate that power losses are reduced by about 16% when the optimal reconfiguration plan is found. The numerical validations are made in the GAMS software licensed by Universidad Tecnológica de Bolívar.spa
dc.format.extent22 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEnergies 2020, 13(17), 4440spa
dc.titleA mixed-integer nonlinear programming model for optimal reconfiguration of DC distribution feedersspa
dcterms.bibliographicCitationSarkar, M.N.I.; Meegahapola, L.G.; Datta, M. Reactive Power Management in Renewable Rich Power Grids: A Review of Grid-Codes, Renewable Generators, Support Devices, Control Strategies and Optimization Algorithms. IEEE Access 2018, 6, 41458–41489spa
dcterms.bibliographicCitationJia, K.; Yang, Z.; Fang, Y.; Bi, T.; Sumner, M. Influence of Inverter-Interfaced Renewable Energy Generators on Directional Relay and an Improved Scheme. IEEE Trans. Power Electron. 2019, 34, 11843–11855spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710spa
dcterms.bibliographicCitationSerra, F.M.; Fernández, L.M.; Montoya, O.D.; Gil-González, W.; Hernández, J.C. Nonlinear Voltage Control for Three-Phase DC-AC Converters in Hybrid Systems: An Application of the PI-PBC Method. Electronics 2020, 9, 847spa
dcterms.bibliographicCitationSimiyu, P.; Xin, A.; Wang, K.; Adwek, G.; Salman, S. Multiterminal Medium Voltage DC Distribution Network Hierarchical Control. Electronics 2020, 9, 506spa
dcterms.bibliographicCitationSechilariu, M.; Wang, B.; Locment, F. Power management and optimization for isolated DC microgrid. In Proceedings of the 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 18–20 June 2014; pp. 1284–1289spa
dcterms.bibliographicCitationGarcés, A. On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777spa
dcterms.bibliographicCitationMontoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W.; Alcalá, G.; Hernandez-Escobedo, Q. Optimal Location and Sizing of PV Sources in DC Networks for Minimizing Greenhouse Emissions in Diesel Generators. Symmetry 2020, 12, 322spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Cruz-Peragón, F.; Alcalá, G. Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization. Energies 2020, 13, 1703spa
dcterms.bibliographicCitationSharip, M.R.M.; Haidar, A.M.A.; Jimel, A.C. Optimum Configuration of Solar PV Topologies for DC Microgrid Connected to the Longhouse Communities in Sarawak, Malaysia. Int. J. Photoenergy 2019, 2019, 1–13spa
dcterms.bibliographicCitationGrisales-Noreña, L.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488spa
dcterms.bibliographicCitationKamran, M.; Bilal, M.; Mudassar, M. DC Home Appliances for DC Distribution System. Mehran Univ. Res. J. Eng. Technol. 2017, 36, 881–890spa
dcterms.bibliographicCitationWong, C.; Liu, C.; Hou, K. DC power supply system for intelligent server. In Proceedings of the 2012 International Symposium on Intelligent Signal Processing and Communications Systems, Taipei, Taiwan, 4–7 November 2012; pp. 245–249spa
dcterms.bibliographicCitationChristakou, K. A unified control strategy for active distribution networks via demand response and distributed energy storage systems. Sustain. Energy Grids Netw. 2016, 6, 1–6.spa
dcterms.bibliographicCitationSatpathi, K.; Ukil, A.; Nag, S.S.; Pou, J.; Zadrodnik, M.A. Comparison of Current-Only Directional Protection in AC and DC Power Systems. In Proceedings of the 2018 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Singapore, 22–25 May 2018; pp. 133–138.spa
dcterms.bibliographicCitationXue, S.; Chen, C.; Jin, Y.; Li, Y.; Li, B.; Wang, Y. Protection for DC Distribution System with Distributed Generator. J. Appl. Math. 2014, 2014, 1–12spa
dcterms.bibliographicCitationOpiyo, N.N. A comparison of DC- versus AC-based minigrids for cost-effective electrification of rural developing communities. Energy Rep. 2019, 5, 398–408.spa
dcterms.bibliographicCitationAlluhaidan, M.; Almutairy, I. Modeling and Protection for Low-Voltage DC Microgrids Riding Through Short Circuiting. Procedia Comput. Sci. 2017, 114, 457–464spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Garces, A. Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach. Int. J. Electr. Power Energy Syst. 2019, 110, 588–597.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L.F. Vortex Search Algorithm for Optimal Power Flow Analysis in DC Resistive Networks with CPLs. IEEE Trans. Circuits Syst. II 2019, 1–5spa
dcterms.bibliographicCitationGarcés, A.; Montoya, O.D. A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms. J. Control Autom. Electr. Syst. 2019, 30, 794–801spa
dcterms.bibliographicCitationAltun, T.; Madani, R.; Yadav, A.P.; Nasir, A.; Davoudi, A. Optimal Reconfiguration of DC Networks. IEEE Trans. Power Syst. 2020, 1.spa
dcterms.bibliographicCitationChidanandappa, R.; Ananthapadmanabha, D.; Ranjith, H.C. Genetic Algorithm Based Network Reconfiguration in Distribution Systems with Multiple DGs for Time Varying Loads. Procedia Technol. 2015, 21, 460–467spa
dcterms.bibliographicCitationAbdelaziz, A.; Mohamed, F.; Mekhamer, S.; Badr, M. Distribution system reconfiguration using a modified Tabu Search algorithm. Electr. Power Syst. Res. 2010, 80, 943–953.spa
dcterms.bibliographicCitationTandon, A.; Saxena, D. Optimal reconfiguration of electrical distribution network using selective particle swarm optimization algorithm. In Proceedings of the 2014 International Conference on Power, Control and Embedded Systems (ICPCES), Allahabad, India, 26–28 December 2014spa
dcterms.bibliographicCitationDaud, J.G.; Kondoj, M.; Patabo, M. Reconfiguration Distribution Network with Ant Colony. In Proceedings of the 2018 International Conference on Applied Science and Technology (iCAST), Manado, Indonesia, 26–27 October 2018; pp. 349–353spa
dcterms.bibliographicCitationVerma, H.K.; Singh, P. Optimal Reconfiguration of Distribution Network Using Modified Culture Algorithm. J. Inst. Eng. (India) Ser. B 2018, 99, 613–622.spa
dcterms.bibliographicCitationHamida, I.B.; Salah, S.B.; Msahli, F.; Mimouni, M.F. Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs. Renew. Energy 2018, 121, 66–80.spa
dcterms.bibliographicCitationSambaiah, K.S.; Jayabarathi, T. Optimal reconfiguration and renewable distributed generation allocation in electric distribution systems. Int. J. Ambient Energy 2019, 1–14.spa
dcterms.bibliographicCitationMurty, V.V.V.S.N.; Kumar, A. Optimal DG integration and network reconfiguration in microgrid system with realistic time varying load model using hybrid optimisation. IET Smart Grid 2019, 2, 192–202spa
dcterms.bibliographicCitationYaprakdal, F.; Baysal, M.; Anvari-Moghaddam, A. Optimal Operational Scheduling of Reconfigurable Microgrids in Presence of Renewable Energy Sources. Energies 2019, 12, 1858.spa
dcterms.bibliographicCitationJangdoost, A.; Keypour, R.; Golmohamadi, H. Optimization of distribution network reconfiguration by a novel RCA integrated with genetic algorithm. Energy Syst. 2020.spa
dcterms.bibliographicCitationMishra, S.; Das, D.; Paul, S. A comprehensive review on power distribution network reconfiguration. Energy Syst. 2016, 8, 227–284.spa
dcterms.bibliographicCitationMontoya, O.D. Numerical Approximation of the Maximum Power Consumption in DC-MGs With CPLs via an SDP Model. IEEE Trans. Circuits Syst. II 2019, 66, 642–646spa
dcterms.bibliographicCitationJansson, C. A Rigorous Lower Bound for the Optimal Value of Convex Optimization Problems. J. Glob. Optim. 2004, 28, 121–137.spa
dcterms.bibliographicCitationYuan, Z.; Hesamzadeh, M.R. Second-order cone AC optimal power flow: convex relaxations and feasible solutions. J. Mod Power Syst. Clean Energy 2018, 7, 268–280spa
dcterms.bibliographicCitationKronqvist, J.; Bernal, D.E.; Lundell, A.; Grossmann, I.E. A review and comparison of solvers for convex MINLP. Optim. Eng. 2018, 20, 397–455.spa
dcterms.bibliographicCitationChew, B.S.H.; Xu, Y.; Wu, Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach. IEEE Trans. Power Syst. 2019, 34, 28–39spa
dcterms.bibliographicCitationLavorato, M.; Franco, J.F.; Rider, M.J.; Romero, R. Imposing Radiality Constraints in Distribution System Optimization Problems. IEEE Trans. Power Syst. 2012, 27, 172–180.spa
dcterms.bibliographicCitationShen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511.spa
dcterms.bibliographicCitationThe, T.T.; Ngoc, D.V.; Anh, N.T. Distribution Network Reconfiguration for Power Loss Reduction and Voltage Profile Improvement Using Chaotic Stochastic Fractal Search Algorithm. Complexity 2020, 2020, 1–15.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Eng. J. 2019.spa
dcterms.bibliographicCitationPfitscher, L.; Bernardon, D.; Canha, L.; Montagner, V.; Garcia, V.; Abaide, A. Intelligent system for automatic reconfiguration of distribution network in real time. Electr. Power Syst. Res. 2013, 97, 84–92spa
dcterms.bibliographicCitationBernardon, D.; de Mello, A.P.C.; Pfitscher, L. Real-Time Reconfiguration of Distribution Network with Distributed Generation. In Real-Time Systems; InTech: London, UK, 2016.spa
dcterms.bibliographicCitationSoroudi, A. Power System Optimization Modeling in GAMS; Springer International Publishing: Berlin/Heidelberg, Germany, 2017spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Rivas-Trujillo, E. Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids. Energies 2020, 13, 228.spa
dcterms.bibliographicCitationAmin, W.T.; Montoya, O.D.; Grisales-Noreña, L.F. Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation. In Communications in Computer and Information Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 552–564spa
dcterms.bibliographicCitationSkworcow, P.; Paluszczyszyn, D.; Ulanicki, B.; Rudek, R.; Belrain, T. Optimisation of Pump and Valve Schedules in Complex Large-scale Water Distribution Systems Using GAMS Modelling Language. Procedia Eng. 2014, 70, 1566–1574.spa
dcterms.bibliographicCitationNaghiloo, A.; Abbaspour, M.; Mohammadi-Ivatloo, B.; Bakhtari, K. GAMS based approach for optimal design and sizing of a pressure retarded osmosis power plant in Bahmanshir river of Iran. Renew. Sustain. Energy Rev. 2015, 52, 1559–1565.spa
dcterms.bibliographicCitationTartibu, L.; Sun, B.; Kaunda, M. Multi-objective optimization of the stack of a thermoacoustic engine using GAMS. Appl. Soft Comput. 2015, 28, 30–43.spa
dcterms.bibliographicCitationMontoya, O.D. Solving a Classical Optimization ProblemUsing GAMS Optimizer Package: Economic Dispatch ProblemImplementation. Ingeniería y Ciencia 2017, 13, 39–63.spa
dcterms.bibliographicCitationTartibu, L.; Sun, B.; Kaunda, M. Optimal Design of A Standing Wave Thermoacoustic Refrigerator Using GAMS. Procedia Comput. Sci. 2015, 62, 611–618spa
dcterms.bibliographicCitationGarces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153spa
dcterms.bibliographicCitationEnel-Codensa. Connection Voltage Levels of Customer Loads; Technical Report; Enel-Codensa (Diseño de red); ENEL: Bogotá, Colombia, 2018. (In Spanish)spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A. Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes. Electr. Power Syst. Res. 2019, 175, 105887.spa
dcterms.bibliographicCitationHuang, Y.C. Enhanced-genetic-algorithm-based fuzzy multi-objective approach to distribution network reconfiguration. IEE Proc. Gener. Transm. Distrib. 2002, 149, 615spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/1996-1073/13/17/4440
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/en13174440
dc.subject.keywordsBranch-to-node incidence matrixspa
dc.subject.keywordsDirect current networksspa
dc.subject.keywordsMixed-integer nonlinear programming modelspa
dc.subject.keywordsGeneral algebraic modelling systemspa
dc.subject.keywordsOptimal reconfiguration of distribution gridsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.