Show simple item record

Seasonality effect analysis and recognition of charging behaviors of electric vehicles: A data science approach

dc.contributor.authorDominguez-Jiménez, Juan A.
dc.contributor.authorCampillo, Javier E.
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorDelahoz, Enrique
dc.contributor.authorHernández, Jesus C.
dc.identifier.citationDominguez-Jimenez, J.A.; Campillo, J.E.; Montoya, O.D.; Delahoz, E.; Hernández, J.C. Seasonality Effect Analysis and Recognition of Charging Behaviors of Electric Vehicles: A Data Science Approach. Sustainability 2020, 12,
dc.description.abstractElectric vehicles (EVs) presence in the power grid can bring about pivotal concerns regarding their energy requirements. EVs charging behaviors can be affected by several aspects including socio-economics, psychological, seasonal among others. This work proposes a case study to analyze seasonal effects on charging patterns, using a public real-world based dataset that contains information from the aggregated load of the total charging stations of Boulder, Colorado. Our approach targets to forecast and recognize EVs demand considering seasonal factors. Principal component analysis (PCA) was used to provide a visual representation of the variables and their contribution and the correlation among them. Then, twelve classification models were trained and tested to discriminate among seasons the charging load of electric vehicles. Later, a benchmark stage is presented for regression as well as for classification results. For regression models, examined through Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE), the random Forest provides better prediction than quasi-Poisson model widely. However, it was observed that for large variations in electric vehicles’ charging load, quasi-Poisson fits better than random forest. For the classification models, evaluated through Accuracy and the Area under the Curve, the Lasso and elastic-net regularized generalized linear (GLMNET) model provided the best global performance with accuracy up to 100% when evaluated on the test dataset. The results of this work offer great insights for enhancing demand response strategies that involve PEV charging regarding charging habits across
dc.format.extent18 páginas
dc.sourceSustainability 2020, 12(18), 7769spa
dc.titleSeasonality effect analysis and recognition of charging behaviors of electric vehicles: A data science approachspa
dcterms.bibliographicCitationAyman, E.R. Toward a Sustainable More Electrified Future: The Role of Electrical Machines and Drives. IEEE Electrif. Mag. 2019, 7, 49–
dcterms.bibliographicCitationWu, G.; Zhang, X.; Dong, Z. Powertrain architectures of electrified vehicles: Review, classification and comparison. J. Frankl. Inst. 2015, 352, 425–448spa
dcterms.bibliographicCitationGuirong, Z.; Henghai, Z.; Houyu, L. The Driving Control of Pure Electric Vehicle. Procedia Environ. Sci. 2011, 10, 433–438spa
dcterms.bibliographicCitationLangbroek, J.H.; Franklin, J.P.; Susilo, Y.O. The effect of policy incentives on electric vehicle adoption. Energy Policy 2016, 94, 94–
dcterms.bibliographicCitationCozzi, L. World Energy Outlook 2018. In International Energy Agency; Technical Report; IEA: Paris, France,
dcterms.bibliographicCitationTamai, G. What Are the Hurdles to Full Vehicle Electrification?[Technology Leaders]. IEEE Electrif. Mag. 2019, 7, 5–
dcterms.bibliographicCitationMega, V.P. The Paths to Decarbonisation Through Cities and Seas. In Eco-Responsible Cities and the Global Ocean; Springer: Berlin, Germany, 2019; pp. 121–
dcterms.bibliographicCitationIEA; UNSD; WHO. Tracking SDG 7: The Energy Progress Report 2019; IRENA: Washington, DC, USA,
dcterms.bibliographicCitationAnastasiadis, A.G.; Kondylis, G.P.; Polyzakis, A.; Vokas, G. Effects of Increased Electric Vehicles into a Distribution Network. Energy Procedia 2019, 157, 586–
dcterms.bibliographicCitationHaustein, S.; Jensen, A.F. Factors of electric vehicle adoption: A comparison of conventional and electric car users based on an extended theory of planned behavior. Int. J. Sustain. Transp. 2018, 12, 484–
dcterms.bibliographicCitationHosseini, S.S.; Badri, A.; Parvania, M. A survey on mobile energy storage systems (MESS): Applications, challenges and solutions. Renew. Sustain. Energy Rev. 2014, 40, 161–
dcterms.bibliographicCitationDominguez, J.; Dante, A.; Agbossou, K.; Henao, N.; Campillo, J.; Cardenas, A.; Kelouwani, S. Optimal Charging Scheduling of Electric Vehicles based on Principal Component Analysis and Convex Optimization. In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020, pp. 935–
dcterms.bibliographicCitationShahidinejad, S.; Filizadeh, S.; Bibeau, E. Profile of charging load on the grid due to plug-in vehicles. IEEE Trans. Smart Grid 2012, 3, 135–
dcterms.bibliographicCitationShao, S.; Pipattanasomporn, M.; Rahman, S. Demand response as a load shaping tool in an intelligent grid with electric vehicles. IEEE Trans. Smart Grid 2011, 2, 624–
dcterms.bibliographicCitationZhao, Y.; Che, Y.; Wang, D.; Liu, H.; Shi, K.; Yu, D. An optimal domestic electric vehicle charging strategy for reducing network transmission loss while taking seasonal factors into consideration. Appl. Sci. 2018, 8,
dcterms.bibliographicCitationBoston, D.; Werthman, A. Plug-in Vehicle Behaviors: An analysis of charging and driving behavior of Ford plug-in electric vehicles in the real world. World Electr. Veh. J. 2016, 8, 926–
dcterms.bibliographicCitationUl-Haq, A.; Azhar, M.; Mahmoud, Y.; Perwaiz, A.; Al-Ammar, E.A. Probabilistic modeling of electric vehicle charging pattern associated with residential load for voltage unbalance assessment. Energies 2017, 10,
dcterms.bibliographicCitationTaylor, J.W.; McSharry, P.E. Short-term load forecasting methods: An evaluation based on european data. IEEE Trans. Power Syst. 2007, 22, 2213–2219spa
dcterms.bibliographicCitationHahn, H.; Meyer-Nieberg, S.; Pickl, S. Electric load forecasting methods: Tools for decision making. Eur. J. Oper. Res. 2009, 199, 902–
dcterms.bibliographicCitationHong, T.; Xie, J.; Black, J. Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting. Int. J. Forecast. 2019, 35, 1389–
dcterms.bibliographicCitationLiang, Y.; Niu, D.; Hong, W.C. Short term load forecasting based on feature extraction and improved general regression neural network model. Energy 2019, 166, 653–
dcterms.bibliographicCitationGanguly, A.; Goswami, K.; Mukherjee, A.; Sil, A.K. Short-Term Load Forecasting for Peak Load Reduction Using Artificial Neural Network Technique. In Advances in Computer, Communication and Control; Springer: Singapore, 2019; pp. 551–
dcterms.bibliographicCitationFranke, T.; Krems, J.F. Understanding charging behaviour of electric vehicle users. Transp. Res. Part F Traff. Psychol. Behav. 2013, 21, 75–
dcterms.bibliographicCitationChen, L.; Nie, Y.; Zhong, Q. A model for electric vehicle charging load forecasting based on trip chains. Trans. China Electrotech. Soc. 2015, 30, 216–225spa
dcterms.bibliographicCitationWang, H.; Wang, B.; Fang, C.; Li, W.; Huang, H. Charging Load Forecasting of Electric Vehicle Based on Charging Frequency. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; p.
dcterms.bibliographicCitationGerossier, A.; Girard, R.; Kariniotakis, G. Modeling and Forecasting Electric Vehicle Consumption Profiles. Energies 2019, 12,
dcterms.bibliographicCitationAlegre, S.; Míguez, J.V.; Carpio, J. Modelling of electric and parallel-hybrid electric vehicle using Matlab/Simulink environment and planning of charging stations through a geographic information system and genetic algorithms. Renew. Sustain. Energy Rev. 2017, 74, 1020–
dcterms.bibliographicCitationMao, D.; Tan, J.; Liu, G.; Wang, J. Location Planning of Fast Charging Station considering its Impact on the Power Grid Assets. arXiv 2019,
dcterms.bibliographicCitationZhang, H.; Hu, Z.; Song, Y.; Xu, Z.; Jia, L. A prediction method for electric vehicle charging load considering spatial and temporal distribution. Autom. Electr. Power Syst. 2014, 38, 13–
dcterms.bibliographicCitationAhmad, A.; Hassan, M.; Abdullah, M.; Rahman, H.; Hussin, F.; Abdullah, H.; Saidur, R. A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev. 2014, 33, 102–
dcterms.bibliographicCitationJiao, R.; Zhang, T.; Jiang, Y.; He, H. Short-Term Non-Residential Load Forecasting Based on Multiple Sequences LSTM Recurrent Neural Network. IEEE Access 2018, 6, 59438–
dcterms.bibliographicCitationAbbasi, R.A.; Javaid, N.; Ghuman, M.N.J.; Khan, Z.A.; Rehman, S.U. Short Term Load Forecasting Using XGBoost. In Workshops of the International Conference on Advanced Information Networking and Applications; Springer: Berlin, Germany, 2019; pp. 1120–
dcterms.bibliographicCitationYan, D.; O’Brien, W.; Hong, T.; Feng, X.; Gunay, H.B.; Tahmasebi, F.; Mahdavi, A. Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy Build. 2015, 107, 264–
dcterms.bibliographicCitationKhatoon, S.; Singh, A.K. Effects of various factors on electric load forecasting: An overview. In Proceedings of the 2014 6th IEEE Power India International Conference (PIICON), Delhi, India, 5–7 December 2014; pp. 1–
dcterms.bibliographicCitationAmara, F.; Agbossou, K.; Dubé, Y.; Kelouwani, S.; Cardenas, A. Estimation of temperature correlation with household electricity demand for forecasting application. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 3960–
dcterms.bibliographicCitationRijal, H.; Humphreys, M.; Nicol, F. Adaptive thermal comfort in Japanese houses during the summer season: behavioral adaptation and the effect of humidity. Buildings 2015, 5, 1037–
dcterms.bibliographicCitationWang, X.; Zhang, M.; Ren, F. Learning customer behavior for effective load forecasting. IEEE Trans. Knowl. Data Eng. 2018, 31, 938–951 .spa
dcterms.bibliographicCitationWu, X.; He, J.; Zhang, P.; Hu, J. Power system short-term load forecasting based on improved random forest with grey relation projection. Autom. Electr. Power Syst. 2015, 39, 50–55spa
dcterms.bibliographicCitationDudek, G. Short-term load forecasting using random forests. In Intelligent Systems’ 2014; Springer: Berlin, Germany, 2015; pp. 821–
dcterms.bibliographicCitationElectric Vehicle Charging Stations: Energy Consumption & Savings. Available online: https:// (accessed on 16 May 2020)spa
dcterms.bibliographicCitationColorado Energy Office. Colorado Energy Office Annual Report 2017–2018; Technical report; Colorado Energy Office: Denver, CO, USA,
dcterms.bibliographicCitationToor, W.; Salisbury, M. Boulder Electric Vehicle Infrastructure and Adoption Assessment. In Southwest Energy Efficiency Project; Technical report; Southwest Energy Efficiency Project (SWEEP): Denver, CO, USA,
dcterms.bibliographicCitationColorado Energy Office. Colorado’s electric vehicle roadmap. In Regional Air Quality Council; Technical report; Colorado Energy Office: Denver, CO, USA, 2020spa
dcterms.bibliographicCitationDowds, J.; Hines, P.; Farmer, C.; Watts, R.; Letendre, S. Plug-in Hybrid Electric Vehicle Research Project: Phase Two Report; Technical report; UVM Transportation Research Center: Burlington, VT, USA,
dcterms.bibliographicCitationVassileva, I.; Campillo, J. Adoption barriers for electric vehicles: Experiences from early adopters in Sweden. Energy 2017, 120, 632–
dcterms.bibliographicCitationJaguemont, J.; Boulon, L.; Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 2016, 164, 99–
dcterms.bibliographicCitationMeyer, N.; Whittal, I.; Christenson, M.; Loiselle-Lapointe, A. The impact of driving cycle and climate on electrical consumption and range of fully electric passenger vehicles. In Proceedings of the EVS26 International Battery, Hybrid, and Fuel Cell Electric Vehicle Symposium, Los Angeles, CA, USA, 6–9 May 2012; pp. 1–
dcterms.bibliographicCitationReyes, J.R.M.D.; Parsons, R.V.; Hoemsen, R. Winter happens: The effect of ambient temperature on the travel range of electric vehicles. IEEE Trans. Veh. Technol. 2016, 65, 4016–
dcterms.bibliographicCitationHow Do Extremely Cold Temperatures Affect the Range Of An Electric Car? Available online: https: // (accessed on 16 December 2013).spa
dcterms.bibliographicCitationSovacool, B.K.; Noel, L.; Kester, J.; de Rubens, G.Z. Reviewing Nordic transport challenges and climate policy priorities: Expert perceptions of decarbonisation in Denmark, Finland, Iceland, Norway, Sweden. Energy 2018, 165, 532–
dcterms.bibliographicCitationWasserstein, R.L.; Schirm, A.L.; Lazar, N.A. Moving to a World Beyond “p < 0.05”. Am. Stat. 2019, 73, 1–
dc.subject.keywordsElectric vehiclesspa
dc.subject.keywordsCharging behaviorspa
dc.subject.keywordsMachine learningspa
dc.subject.keywordsCharging stationsspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.audiencePúblico generalspa

Files in this item


This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as