Show simple item record

Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.contributor.authorDominguez-Jiménez, Juan A.
dc.contributor.authorMolina-Cabrera, Alexander
dc.contributor.authorGiral-Ramírez, Diego A.
dc.identifier.citationMontoya, O.D.; Gil-González, W.; Dominguez-Jimenez, J.A.; Molina-Cabrera, A.; Giral-Ramírez, D.A. Global Stabilization of a Reaction Wheel Pendulum: A Discrete-Inverse Optimal Formulation Approach via A Control Lyapunov Function. Symmetry 2020, 12,
dc.description.abstractThis paper deals with the global stabilization of the reaction wheel pendulum (RWP) in the discrete-time domain. The discrete-inverse optimal control approach via a control Lyapunov function (CLF) is employed to make the stabilization task. The main advantages of using this control methodology can be summarized as follows: (i) it guarantees exponential stability in closed-loop operation, and (ii) the inverse control law is optimal since it minimizes the cost functional of the system. Numerical simulations demonstrate that the RWP is stabilized with the discrete-inverse optimal control approach via a CLF with different settling times as a function of the control gains. Furthermore, parametric uncertainties and comparisons with nonlinear controllers such as passivity-based and Lyapunov-based approaches developed in the continuous-time domain have demonstrated the superiority of the proposed discrete control approach. All of these simulations have been implemented in the MATLAB
dc.format.extent13 páginas
dc.sourceSymmetry 2020 , 12 (11), 1771, Vol 12 no 11spa
dc.titleGlobal stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov functionspa
dcterms.bibliographicCitationIsidori, A. Nonlinear Control Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany,
dcterms.bibliographicCitationIqbal, J.; Ullah, M.; Khan, S.G.; Khelifa, B.; Cukovi´c, S. Nonlinear control systems-A brief overview of ´ historical and recent advances. Nonlinear Eng. 2017, 6, 301–
dcterms.bibliographicCitationLu, Q.; Sun, Y.; Mei, S. Nonlinear Control Systems and Power System Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach. Eng. Sci. Technol. Int. J. 2020, 23, 21–29spa
dcterms.bibliographicCitationMontoya, O.D.; Garrido, V.M.; Gil-González, W.; Orozco-Henao, C. Passivity-Based Control Applied of a Reaction Wheel Pendulum: An IDA-PBC Approach. In Proceedings of the 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 13–15 November 2019; pp. 1–6spa
dcterms.bibliographicCitationOlivares, M.; Albertos, P. Linear control of the flywheel inverted pendulum. ISA Trans. 2014, 53, 1396–
dcterms.bibliographicCitationCorrea-Ramírez, V.D.; Giraldo-Buitrago, D.; Escobar-Mejía, A. Fuzzy control of an inverted pendulum Driven by a reaction wheel using a trajectory tracking scheme. TecnoLogicas 2017, 20, 57–
dcterms.bibliographicCitationSpong, M.W.; Corke, P.; Lozano, R. Nonlinear control of the Reaction Wheel Pendulum. Automatica 2001, 37, 1845–
dcterms.bibliographicCitationBaimukashev, D.; Sandibay, N.; Rakhim, B.; Varol, H.A.; Rubagotti, M. Deep Learning-Based Approximate Optimal Control of a Reaction-Wheel-Actuated Spherical Inverted Pendulum. In Proceedings of the 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Boston, MA, USA, 6–9 July 2020; pp. 1322–
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Ramírez-Vanegas, C. Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach. Symmetry 2020, 12,
dcterms.bibliographicCitationSanchez, E.N.; Ornelas-Tellez, F. Discrete-Time Inverse Optimal Control for Nonlinear Systems; CRC Press Taylor and Francis Group: Boca Raton, FL, USA,
dcterms.bibliographicCitationOrnelas, F.; Sanchez, E.N.; Loukianov, A.G. Discrete-time inverse optimal control for nonlinear systems trajectory tracking. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Serra, F.M. Discrete-time inverse optimal control for a reaction wheel pendulum: a passivity-based control approach. Rev. UIS Ing. 2020, 19, 123–
dcterms.bibliographicCitationOhsawa, T.; Bloch, A.M.; Leok, M. Discrete Hamilton-Jacobi Theory. SIAM J. Control Optim. 2011, 49, 1829–
dcterms.bibliographicCitationBlock, D.J.; Åström, K.J.; Spong, M.W. The reaction wheel pendulum. Synth. Lect. Control Mechatron. 2007, 1, 1–
dcterms.bibliographicCitationAtkinson, C.; Osseiran, A. Discrete-space time-fractional processes. Fract. Calc. Appl. Anal. 2011, 14spa
dcterms.bibliographicCitationOwolabi, K.M.; Atangana, A. Finite Difference Approximations. In Numerical Methods for Fractional Differentiation; Springer: Singapore, 2019; pp. 83–
dcterms.bibliographicCitationSun, J.; liang Cheng, X. Iterative methods for a forward-backward heat equation in two-dimension. Appl. Math.-A J. Chin. Univ. 2010, 25, 101–
dcterms.bibliographicCitationKeadnarmol, P.; Rojsiraphisal, T. Globally exponential stability of a certain neutral differential equation with time-varying delays. Adv. Differ. Equ. 2014,
dcterms.bibliographicCitationTeel, A.R.; Forni, F.; Zaccarian, L. Lyapunov-Based Sufficient Conditions for Exponential Stability in Hybrid Systems. IEEE Trans. Autom. Control 2013, 58, 1591–
dcterms.bibliographicCitationValenzuela, J.G.; Montoya, O.D.; Giraldo-Buitrago, D. Local Control of Reaction Wheel Pendulum Using Fuzzy Logic. Sci. Tech. 2013, 18, 623–
dcterms.bibliographicCitationSanfelice, R.G. On the Existence of Control Lyapunov Functions and State-Feedback Laws for Hybrid Systems. IEEE Trans. Autom. Control 2013, 58, 3242–
dc.subject.keywordsDiscrete-inverse optimal controlspa
dc.subject.keywordsGlobal exponential stabilizationspa
dc.subject.keywordsReaction wheel pendulumspa
dc.subject.keywordsParametric uncertaintiesspa
dc.subject.keywordsDiscrete-affine systemsspa
dc.subject.keywordsCost functionalspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.audiencePúblico generalspa

Files in this item


This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as