Show simple item record

Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.contributor.authorDominguez-Jiménez, Juan A.
dc.contributor.authorMolina-Cabrera, Alexander
dc.contributor.authorGiral-Ramírez, Diego A.
dc.date.accessioned2020-11-04T21:34:22Z
dc.date.available2020-11-04T21:34:22Z
dc.date.issued2020-10-26
dc.date.submitted2020-11-03
dc.identifier.citationMontoya, O.D.; Gil-González, W.; Dominguez-Jimenez, J.A.; Molina-Cabrera, A.; Giral-Ramírez, D.A. Global Stabilization of a Reaction Wheel Pendulum: A Discrete-Inverse Optimal Formulation Approach via A Control Lyapunov Function. Symmetry 2020, 12, 1771.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9544
dc.description.abstractThis paper deals with the global stabilization of the reaction wheel pendulum (RWP) in the discrete-time domain. The discrete-inverse optimal control approach via a control Lyapunov function (CLF) is employed to make the stabilization task. The main advantages of using this control methodology can be summarized as follows: (i) it guarantees exponential stability in closed-loop operation, and (ii) the inverse control law is optimal since it minimizes the cost functional of the system. Numerical simulations demonstrate that the RWP is stabilized with the discrete-inverse optimal control approach via a CLF with different settling times as a function of the control gains. Furthermore, parametric uncertainties and comparisons with nonlinear controllers such as passivity-based and Lyapunov-based approaches developed in the continuous-time domain have demonstrated the superiority of the proposed discrete control approach. All of these simulations have been implemented in the MATLAB software.spa
dc.format.extent13 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSymmetry 2020 , 12 (11), 1771, Vol 12 no 11spa
dc.titleGlobal stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov functionspa
dcterms.bibliographicCitationIsidori, A. Nonlinear Control Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.spa
dcterms.bibliographicCitationIqbal, J.; Ullah, M.; Khan, S.G.; Khelifa, B.; Cukovi´c, S. Nonlinear control systems-A brief overview of ´ historical and recent advances. Nonlinear Eng. 2017, 6, 301–312.spa
dcterms.bibliographicCitationLu, Q.; Sun, Y.; Mei, S. Nonlinear Control Systems and Power System Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 10.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach. Eng. Sci. Technol. Int. J. 2020, 23, 21–29spa
dcterms.bibliographicCitationMontoya, O.D.; Garrido, V.M.; Gil-González, W.; Orozco-Henao, C. Passivity-Based Control Applied of a Reaction Wheel Pendulum: An IDA-PBC Approach. In Proceedings of the 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 13–15 November 2019; pp. 1–6spa
dcterms.bibliographicCitationOlivares, M.; Albertos, P. Linear control of the flywheel inverted pendulum. ISA Trans. 2014, 53, 1396–1403.spa
dcterms.bibliographicCitationCorrea-Ramírez, V.D.; Giraldo-Buitrago, D.; Escobar-Mejía, A. Fuzzy control of an inverted pendulum Driven by a reaction wheel using a trajectory tracking scheme. TecnoLogicas 2017, 20, 57–69.spa
dcterms.bibliographicCitationSpong, M.W.; Corke, P.; Lozano, R. Nonlinear control of the Reaction Wheel Pendulum. Automatica 2001, 37, 1845–1851.spa
dcterms.bibliographicCitationBaimukashev, D.; Sandibay, N.; Rakhim, B.; Varol, H.A.; Rubagotti, M. Deep Learning-Based Approximate Optimal Control of a Reaction-Wheel-Actuated Spherical Inverted Pendulum. In Proceedings of the 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Boston, MA, USA, 6–9 July 2020; pp. 1322–1328.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Ramírez-Vanegas, C. Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach. Symmetry 2020, 12, 1359.spa
dcterms.bibliographicCitationSanchez, E.N.; Ornelas-Tellez, F. Discrete-Time Inverse Optimal Control for Nonlinear Systems; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2017.spa
dcterms.bibliographicCitationOrnelas, F.; Sanchez, E.N.; Loukianov, A.G. Discrete-time inverse optimal control for nonlinear systems trajectory tracking. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Serra, F.M. Discrete-time inverse optimal control for a reaction wheel pendulum: a passivity-based control approach. Rev. UIS Ing. 2020, 19, 123–132.spa
dcterms.bibliographicCitationOhsawa, T.; Bloch, A.M.; Leok, M. Discrete Hamilton-Jacobi Theory. SIAM J. Control Optim. 2011, 49, 1829–1856.spa
dcterms.bibliographicCitationBlock, D.J.; Åström, K.J.; Spong, M.W. The reaction wheel pendulum. Synth. Lect. Control Mechatron. 2007, 1, 1–105.spa
dcterms.bibliographicCitationAtkinson, C.; Osseiran, A. Discrete-space time-fractional processes. Fract. Calc. Appl. Anal. 2011, 14spa
dcterms.bibliographicCitationOwolabi, K.M.; Atangana, A. Finite Difference Approximations. In Numerical Methods for Fractional Differentiation; Springer: Singapore, 2019; pp. 83–137.spa
dcterms.bibliographicCitationSun, J.; liang Cheng, X. Iterative methods for a forward-backward heat equation in two-dimension. Appl. Math.-A J. Chin. Univ. 2010, 25, 101–111.spa
dcterms.bibliographicCitationKeadnarmol, P.; Rojsiraphisal, T. Globally exponential stability of a certain neutral differential equation with time-varying delays. Adv. Differ. Equ. 2014, 2014.spa
dcterms.bibliographicCitationTeel, A.R.; Forni, F.; Zaccarian, L. Lyapunov-Based Sufficient Conditions for Exponential Stability in Hybrid Systems. IEEE Trans. Autom. Control 2013, 58, 1591–1596.spa
dcterms.bibliographicCitationValenzuela, J.G.; Montoya, O.D.; Giraldo-Buitrago, D. Local Control of Reaction Wheel Pendulum Using Fuzzy Logic. Sci. Tech. 2013, 18, 623–632.spa
dcterms.bibliographicCitationSanfelice, R.G. On the Existence of Control Lyapunov Functions and State-Feedback Laws for Hybrid Systems. IEEE Trans. Autom. Control 2013, 58, 3242–3248.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2073-8994/12/11/1771
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/sym12111771
dc.subject.keywordsDiscrete-inverse optimal controlspa
dc.subject.keywordsGlobal exponential stabilizationspa
dc.subject.keywordsReaction wheel pendulumspa
dc.subject.keywordsParametric uncertaintiesspa
dc.subject.keywordsDiscrete-affine systemsspa
dc.subject.keywordsCost functionalspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/