Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorMartín-Serra, Federico
dc.contributor.authorDe Angelo, Cristian Hernan
dc.date.accessioned2020-11-04T21:10:29Z
dc.date.available2020-11-04T21:10:29Z
dc.date.issued2020-08-20
dc.date.submitted2020-11-03
dc.identifier.citationMontoya, O.D.; Serra, F.M.; De Angelo, C.H. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 2020, 9, 1352.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9539
dc.description.abstractThis research deals with the efficiency comparison between AC and DC distribution networks that can provide electricity to rural and urban areas from the point of view of grid energy losses and greenhouse gas emissions impact. Configurations for medium- and low-voltage networks are analyzed via optimal power flow analysis by adding voltage regulation and devices capabilities sources in the mathematical formulation. Renewable energy resources such as wind and photovoltaic are considered using typical daily generation curves. Batteries are formulated with a linear representation taking into account operative bounds suggested by manufacturers. Numerical results in two electrical networks with 0.24 kV and 12.66 kV (with radial and meshed configurations) are performed with constant power loads at all the nodes. These simulations confirm that power distribution with DC technology is more efficient regarding energy losses, voltage profiles and greenhouse emissions than its AC counterpart. All the numerical results are tested in the General Algebraic Modeling System widely known as GAMS.spa
dc.format.extent23 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics 2020, 9(9), 1352spa
dc.titleOn the efficiency in electrical networks with ac and dc operation technologies: A comparative study at the distribution stagespa
dcterms.bibliographicCitationPoudineh, R.; Peng, D.; Mirnezami, S. Electricity Networks: Technology, Future Role and Economic Incentives for Innovation; Technical Report; The Oxford Institute for Energy Studies: Oxford, UK, 2017. [CrossRef]
dcterms.bibliographicCitationLiu, Y.; Yu, Z.; Li, H.; Zeng, R. The LCOE-Indicator-Based Comprehensive Economic Comparison between AC and DC Power Distribution Networks with High Penetration of Renewable Energy. Energies 2019, 12, 4621. [CrossRef]
dcterms.bibliographicCitationSimiyu, P.; Xin, A.; Wang, K.; Adwek, G.; Salman, S. Multiterminal Medium Voltage DC Distribution Network Hierarchical Control. Electronics 2020, 9, 506. [CrossRef]
dcterms.bibliographicCitationLi, H.; Cui, H.; Li, C. Distribution Network Power Loss Analysis Considering Uncertainties in Distributed Generations. Sustainability 2019, 11, 1311. [CrossRef]
dcterms.bibliographicCitationMontoya, O.D.; Grajales, A.; Hincapié, R.A.; Granada, M. A new approach to solve the distribution system planning problem considering automatic reclosers. Ingeniare Rev. Chil. Ing. 2017, 25, 415–429. [CrossRef]
dcterms.bibliographicCitationCorrea, K.A.; Cortes-Alonso, R.A. Technical Analysis of Power Losses in Medium Voltage Levels; Resreport; Universidad Tecnológica de Pereira: Risaralda, Colombia, 2019. (In Spanish)
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710. [CrossRef]
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Cruz-Peragón, F.; Alcalá, G. Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization. Energies 2020, 13, 1703. [CrossRef]
dcterms.bibliographicCitationWang, X.-F.; Song, Y.; Irving, M. Load Flow Analysis. In Modern Power Systems Analysis; Springer US: New York, NY, USA, 2008; pp. 71–128. [CrossRef]
dcterms.bibliographicCitationLi, R.; Wang, W.; Chen, Z.; Jiang, J.; Zhang, W. A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches. Energies 2017, 10, 1715. [CrossRef]
dcterms.bibliographicCitationWang, S.; Sun, Y.; Li, Y.; Li, K.; An, P.; Yu, G. Optimal Planning of Distributed Generation and Loads in Active Distribution Network: A Review. In Proceedings of the 2020 4th International Conference on Green Energy and Applications (ICGEA), Singapore, 7–9 March 2020; pp. 176–181.
dcterms.bibliographicCitationChew, B.S.H.; Xu, Y.; Wu, Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach. IEEE Trans. Power Syst. 2019, 34, 28–39. [CrossRef]
dcterms.bibliographicCitationMontoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W.; Alcalá, G.; Hernandez-Escobedo, Q. Optimal Location and Sizing of PV Sources in DC Networks for Minimizing Greenhouse Emissions in Diesel Generators. Symmetry 2020, 12, 322. [CrossRef]
dcterms.bibliographicCitationGrisales-Noreña, L.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488. [CrossRef]
dcterms.bibliographicCitationAltun, T.; Madani, R.; Yadav, A.P.; Nasir, A.; Davoudi, A. Optimal Reconfiguration of DC Networks. IEEE Trans. Power Syst. 2020. [CrossRef]
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Rivas-Trujillo, E. Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids. Energies 2020, 13, 2289. [CrossRef]
dcterms.bibliographicCitationJakus, D.; Caˇ denovi´c, R.; Vasilj, J.; Sarajˇcev, P. Optimal Reconfiguration of Distribution Networks Using ¯ Hybrid Heuristic-Genetic Algorithm. Energies 2020, 13, 1544. [CrossRef]
dcterms.bibliographicCitationDiaaeldin, I.; Aleem, S.A.; El-Rafei, A.; Abdelaziz, A.; Zobaa, A.F. Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation. Energies 2019, 12, 4172. [CrossRef]
dcterms.bibliographicCitationCaˇ denovi´c, R.; Jakus, D.; Sarajˇcev, P.; Vasilj, J. Optimal Distribution Network Reconfiguration through ¯ Integration of Cycle-Break and Genetic Algorithms. Energies 2018, 11, 1278. [CrossRef]
dcterms.bibliographicCitationInjeti, S.K.; Shareef, S.M.; Kumar, T.V. Optimal Allocation of DGs and Capacitor Banks in Radial Distribution Systems. Distrib. Gener. Altern. Energy J. 2018, 33, 6–34. [CrossRef]
dcterms.bibliographicCitationNagaraju, S.K.; Sivanagaraju, S.; Ramana, T.; Satyanarayana, S.; Prasad, P.V. A Novel Method for Optimal Distributed Generator Placement in Radial Distribution Systems. Distrib. Gener. Altern. Energy J. 2011, 26, 7–19. [CrossRef]
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J.; Hernandez-Escobedo, Q. Optimal Placement and Sizing of Wind Generators in AC Grids Considering Reactive Power Capability and Wind Speed Curves. Sustainability 2020, 12, 2983. [CrossRef]
dcterms.bibliographicCitationRao, R.S.; Satish, K.; Narasimham, S.V.L. Optimal Conductor Size Selection in Distribution Systems Using the Harmony Search Algorithm with a Differential Operator. Electr. Power Compon. Syst. 2011, 40, 41–56. [CrossRef]
dcterms.bibliographicCitationTÜRKAY, B.; ARTAÇ, T. Optimal Distribution Network Design Using Genetic Algorithms. Electr. Power Compon. Syst. 2005, 33, 513–524. [CrossRef]
dcterms.bibliographicCitationFalaghi, H.; Ramezani, M.; Haghifam, M.R.; Milani, K. Optimal selection of conductors in radial distribution systems with time varying load. In Proceedings of the 18th International Conference and Exhibition on Electricity Distribution (CIRED 2005), Turin, Italy, 6–9 June 2005. [CrossRef]
dcterms.bibliographicCitationJavadian, S.; Haghifam, M.R. Optimal placement of protective devices in distribution networks based on risk analysis. In Proceedings of the 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), Sao Paulo, Brazil, 8–10 November 2010. [CrossRef] 27. 28. 30. Lavorato, M.; Franco, J.F.; Rider, M.J.; Romero, R. Imposing Radiality Constraints in Distribution System Optimization Problems. IEEE Trans. Power Syst. 2012, 27, 172–180. [CrossRef]
dcterms.bibliographicCitationMontoya, O.D.; Hincapie, R.A.; Granada, M. Optimal Location of Protective Devices Using Multi-objective Approach. In Communications in Computer and Information Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 3–15. [CrossRef]
dcterms.bibliographicCitationKatyara, S.; Staszewski, L.; Leonowicz, Z. Protection Coordination of Properly Sized and Placed Distributed Generations–Methods, Applications and Future Scope. Energies 2018, 11, 2672. [CrossRef] 29. Fathima, H.; Palanisamy, K. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System. Model. Simul. Eng. 2015, 2015, 1–16. [CrossRef]
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A. Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges. Int. J. Electr. Power Energy Syst. 2020, 123, 106299. [CrossRef]
dcterms.bibliographicCitationSerra, F.M.; Fernández, L.M.; Montoya, O.D.; Gil-González, W.; Hernández, J.C. Nonlinear Voltage Control for Three-Phase DC-AC Converters in Hybrid Systems: An Application of the PI-PBC Method. Electronics 2020, 9, 847. [CrossRef]
dcterms.bibliographicCitationRodriguez, P.; Rouzbehi, K. Multi-terminal DC grids: challenges and prospects. J. Mod Power Syst. Clean Energy 2017, 5, 515–523. [CrossRef]
dcterms.bibliographicCitationLuna, A.C.; Diaz, N.L.; Andrade, F.; Graells, M.; Guerrero, J.M.; Vasquez, J.C. Economic power dispatch of distributed generators in a grid-connected microgrid. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 1–5 June 2015; pp. 1161–1168.
dcterms.bibliographicCitationMacedo, L.H.; Franco, J.F.; Rider, M.J.; Romero, R. Optimal Operation of Distribution Networks Considering Energy Storage Devices. IEEE Trans. Smart Grid 2015, 6, 2825–2836. [CrossRef]
dcterms.bibliographicCitationSoroudi, A. Power System Optimization Modeling in GAMS; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [CrossRef]
dcterms.bibliographicCitationMontoya, O.D.; Grajales, A.; Garces, A.; Castro, C.A. Distribution Systems Operation Considering Energy Storage Devices and Distributed Generation. IEEE Lat. Am. Trans. 2017, 15, 890–900. [CrossRef]
dcterms.bibliographicCitationGiraldo, O.D.M. Solving a Classical Optimization Problem Using GAMS Optimizer Package: Economic Dispatch Problem Implementation. Ing. Cienc. 2017, 13, 39–63. [CrossRef]
dcterms.bibliographicCitationAguado, J.; de la Torre, S.; Triviño, A. Battery energy storage systems in transmission network expansion planning. Electr. Power Syst. Res. 2017, 145, 63–72. [CrossRef]
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L.; Orozco-Henao, C.; Serra, F. Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models. Energies 2019, 12, 4494. [CrossRef]
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Eng. J. 2020, 11, 409–418. [CrossRef]
dcterms.bibliographicCitationKumar, M.; Kumar, A.; Sandhu, K. Optimal Location of WT based Distributed Generation in Pool based Electricity Market using Mixed Integer Non Linear Programming. Mater. Today Proc. 2018, 5, 445–457. [CrossRef]
dcterms.bibliographicCitationNaghiloo, A.; Abbaspour, M.; Mohammadi-Ivatloo, B.; Bakhtari, K. GAMS based approach for optimal design and sizing of a pressure retarded osmosis power plant in Bahmanshir river of Iran. Renew. Sustain. Energy Rev. 2015, 52, 1559–1565. [CrossRef]
dcterms.bibliographicCitationSkworcow, P.; Paluszczyszyn, D.; Ulanicki, B.; Rudek, R.; Belrain, T. Optimisation of Pump and Valve Schedules in Complex Large-scale Water Distribution Systems Using GAMS Modelling Language. Procedia Eng. 2014, 70, 1566–1574. [CrossRef]
dcterms.bibliographicCitationAmin, W.T.; Montoya, O.D.; Grisales-Noreña, L.F. Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation. In Communications in Computer and Information Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 552–564. [CrossRef]
dcterms.bibliographicCitationTartibu, L.; Sun, B.; Kaunda, M. Multi-objective optimization of the stack of a thermoacoustic engine using GAMS. Appl. Soft Comput. 2015, 28, 30–43. [CrossRef]
dcterms.bibliographicCitationGallego-Londoño, J.P.; Montoya-Giraldo, O.D.; Hincapié-Isaza, R.A.; Granada-Echeverri, M. Ubicación óptima de reconectadores y fusibles en sistemas de distribución. ITECKNE 2016, 13, 113. [CrossRef]
dcterms.bibliographicCitationShen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511. [CrossRef]
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Garces, A. Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach. Int. J. Electr. Power Energy Syst. 2019, 110, 588–597. [CrossRef]
dcterms.bibliographicCitationSiraj, K.; Khan, H.A. DC distribution for residential power networks-A framework to analyze the impact of voltage levels on energy efficiency. Energy Rep. 2020, 6, 944–951. [CrossRef]
dcterms.bibliographicCitationGrisales-Noreña, L.; Montoya, D.G.; Ramos-Paja, C. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies 2018, 11, 1018. [CrossRef]
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2079-9292/9/9/1352
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/electronics9091352
dc.subject.keywordsAlternating current networksspa
dc.subject.keywordsDirect current networksspa
dc.subject.keywordsOptimal power flowspa
dc.subject.keywordsNon-linear optimizationspa
dc.subject.keywordsControl of power electronic convertersspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.