Mostrar el registro sencillo del ítem
Vortex Search Algorithm for Optimal Power Flow Analysis in DC Resistive Networks With CPLs
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Gil-González, Walter | |
dc.contributor.author | Grisales-Noreña, Luis Fernando | |
dc.date.accessioned | 2020-11-04T20:55:35Z | |
dc.date.available | 2020-11-04T20:55:35Z | |
dc.date.issued | 2019-08-30 | |
dc.date.submitted | 2020-11-03 | |
dc.identifier.citation | O. D. Montoya, W. Gil-González and L. F. Grisales-Noreña, "Vortex Search Algorithm for Optimal Power Flow Analysis in DC Resistive Networks With CPLs," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 8, pp. 1439-1443, Aug. 2020, doi: 10.1109/TCSII.2019.2938530. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9536 | |
dc.description.abstract | This express brief addresses the optimal power flow (OPF) analysis in direct-current (DC) resistive networks with constant power loads (CPLs). The OPF employs the vortex search algorithm (VSA) in conjunction with a power flow method based on successive approximations by proposing a master-slave optimization methodology. The VSA is a powerful numerical optimization method that works with Gaussian distributions and variable radius for intensive exploration and exploitation in the solution space of the OPF problem. The power flow based on successive approximations allows evaluating the objective function by solving the non-convex equality constraints related to the power balance equations. Numerical implementations in two distribution DC feeders with 10 and 21 nodes show that the proposed approach attains the optimal solution reported by convex approximations, sequential quadratic models and nonlinear optimization methods. All the simulations have been conducted in MATLAB software. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | IEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 67, Issue: 8, Aug. 2020) | spa |
dc.title | Vortex Search Algorithm for Optimal Power Flow Analysis in DC Resistive Networks With CPLs | spa |
dcterms.bibliographicCitation | J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. De Vicuña and M. Castilla, "Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization", IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011. | spa |
dcterms.bibliographicCitation | J. Li, F. Liu, Z. Wang, S. H. Low and S. Mei, "Optimal power flow in stand-alone DC microgrids", IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5496-5506, Sep. 2018. | spa |
dcterms.bibliographicCitation | O. D. Montoya, V. M. Garrido, W. Gil-González and L. Grisales-Noreña, "Power flow analysis in DC grids: Two alternative numerical methods", IEEE Trans. Circuits Syst. II Exp. Briefs. | spa |
dcterms.bibliographicCitation | A. Garcés, "On the convergence of Newton’s method in power flow studies for DC microgrids", IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5770-5777, Sep. 2018. | spa |
dcterms.bibliographicCitation | O. D. Montoya, W. Gil-González and L. F. Grisales-Noreña, "Optimal power dispatch of DGs in DC power grids: A hybrid Gauss–Seidel-genetic-algorithm methodology for solving the OPF problem", WSEAS Trans. Power Syst., vol. 13, no. 33, pp. 335-346, 2018. | spa |
dcterms.bibliographicCitation | B. Baydar, H. Gozde, M. C. Taplamacioglu and A. O. Kucuk, "Resilient optimal power flow with evolutionary computation methods: Short survey" in Power Systems Resilience, Cham, Switzerland:Springer, pp. 163-189, 2019, [online] Available: https://link.springer.com/chapter/10.1007/978-3-319-94442-5_7. | spa |
dcterms.bibliographicCitation | O. S. Velasquez, O. D. Montoya, V. M. G. Arevalo and L. F. G. Norena, "Optimal power flow in direct-current power grids via black hole optimization", Adv. Elect. Electron. Eng., vol. 17, no. 1, pp. 24-32, 2019. | spa |
dcterms.bibliographicCitation | S. H. Low, "Convex relaxation of optimal power flow—Part I: Formulations and equivalence", IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp. 15-27, Mar. 2014. | spa |
dcterms.bibliographicCitation | O. D. Montoya, W. Gil-González and A. Garces, "Sequential quadratic programming models for solving the OPF problem in DC grids", Elect. Power Syst. Res., vol. 169, pp. 18-23, Apr. 2019. | spa |
dcterms.bibliographicCitation | L. Gan and S. H. Low, "Optimal power flow in direct current networks", IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2892-2904, Nov. 2014. | spa |
dcterms.bibliographicCitation | S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U.K.:Cambridge Univ. Press, 2004. | spa |
dcterms.bibliographicCitation | A. Özkış and A. Babalık, "A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm", Inf. Sci., vol. 402, pp. 124-148, Sep. 2017. | spa |
dcterms.bibliographicCitation | O. D. Montoya, "Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 66, no. 4, pp. 642-646, Apr. 2019. | spa |
dcterms.bibliographicCitation | N. Barabanov, R. Ortega, R. Griñó and B. Polyak, "On existence and stability of equilibria of linear time-invariant systems with constant power loads", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 63, no. 1, pp. 114-121, Jan. 2016. | spa |
dcterms.bibliographicCitation | M. Huang, H. Ji, J. Sun, L. Wei and X. Zha, "Bifurcation-based stability analysis of photovoltaic-battery hybrid power system", IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 1055-1067, Sep. 2017. | spa |
dcterms.bibliographicCitation | M. Huang, Y. Peng, C. K. Tse, Y. Liu, J. Sun and X. Zha, "Bifurcation and large-signal stability analysis of three-phase voltage source converter under grid voltage dips", IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8868-8879, Nov. 2017. | spa |
dcterms.bibliographicCitation | S. Sanchez and M. Molinas, "Large signal stability analysis at the common coupling point of a DC microgrid: A grid impedance estimation approach based on a recursive method", IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 122-131, Mar. 2015. | spa |
dcterms.bibliographicCitation | K. Rouzbehi, A. Miranian, J. I. Candela, A. Luna and P. Rodriguez, "A generalized voltage droop strategy for control of multiterminal DC grids", IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 607-618, Jan/Feb. 2015. | spa |
dcterms.bibliographicCitation | M. A. M. Ramli and H. R. E. H. Bouchekara, "Estimation of solar radiation on PV panel surface with optimum tilt angle using vortex search algorithm", IET Renew. Power Gener., vol. 12, no. 10, pp. 1138-1145, Jul. 2018. | spa |
dcterms.bibliographicCitation | O. D. Montoya, L. F. Grisales-Noreña, D. González-Montoya, C. Ramos-Paja and A. Garces, "Linear power flow formulation for low-voltage DC power grids", Elect. Power Syst. Res., vol. 163, pp. 375-381, Oct. 2018. | spa |
datacite.rights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://ieeexplore.ieee.org/abstract/document/8821394 | |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1109/TCSII.2019.2938530. | |
dc.subject.keywords | Direct current networks | spa |
dc.subject.keywords | Pure-algorithmic methodology | spa |
dc.subject.keywords | Optimal power flow | spa |
dc.subject.keywords | Vortex search algorithm | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.