Mostrar el registro sencillo del ítem
Power flow solution in direct current grids using the linear conjugate gradient approach
dc.contributor.author | Montoya, O D | |
dc.contributor.author | Escobar, A F | |
dc.contributor.author | Garrido Arévalo, Víctor Manuel | |
dc.date.accessioned | 2020-11-04T19:30:47Z | |
dc.date.available | 2020-11-04T19:30:47Z | |
dc.date.issued | 2019-09-24 | |
dc.date.submitted | 2020-10-30 | |
dc.identifier.citation | Montoya, O., Escobar, A. and Garrido, V., 2020. Power flow solution in direct current grids using the linear conjugate gradient approach. Journal of Physics: Conference Series, 1448, p.012016. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9526 | |
dc.description.abstract | The Colombian power system is being modified by the large-scale integration of renewable energy resources and energy storage systems, in conjunction with the microgrid concept that originates the possibility of alternating and direct current grids or hybrid between them. Here, we propose a classical gradient conjugate method to solve linear algebraic equations without matrix inversions, to address the power flow problem in electrical direct current networks with constant power loads, to contribute with the paradigm of microgrids operated in direct current. This methodology can be applied to the power flow equations since the admittance matrix is positive definite and diagonal dominant which guarantees convergence of the power flow problems. Numerical simulations evidence the applicability of the gradient conjugate method to solve power flow problems in direct current networks with radial and mesh topologies. All the simulations are conducted in MATLAB software version 2017a licensed by the Universidad Tecnológica de Bolivar, Colombia. | spa |
dc.format.extent | 6 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Journal of Physics: Conference Series, Volume 1448 | spa |
dc.title | Power flow solution in direct current grids using the linear conjugate gradient approach | spa |
dcterms.bibliographicCitation | Garces A 2017 Uniqueness of the power flow solutions in low voltage direct current grids Electr. Power Syst. Res. 151 149 | spa |
dcterms.bibliographicCitation | Montoya O D, Garrido V M, Gil-Gonzalez W, and Grisales-Nore ´ na L F 2019 Power flow analysis in DC grids: Two ˜ alternative numerical methods IEEE Trans. Circuits Syst. II: Express Briefs 66(11) 1865 | spa |
dcterms.bibliographicCitation | Montoya O D, Grisales-Norena L F, Gonz ˜ alez-Montoya D, Ramos-Paja C, and Garces A 2018 Linear power flow ´ formulation for low-voltage DC power grids Electr. Power Syst. Res. 163 375 | spa |
dcterms.bibliographicCitation | Simpson-Porco J W, Dorfler F, and Bullo F 2015 On resistive networks of constant-power devices IEEE Trans. Circuits Syst. II: Express Briefs 62(8) 811 | spa |
dcterms.bibliographicCitation | Nasirian V, Moayedi S, Davoudi A, and Lewis F L 2015 Distributed cooperative control of DC microgrids IEEE Trans. Power Electron. 30(4) 2288 | spa |
dcterms.bibliographicCitation | Li X, Guo L, Li Y, Hong C, Zhang Y, Guo Z, Huang D, and Wang C 2018 Flexible interlinking and coordinated power control of multiple DC microgrids clusters IEEE Trans. Sustain. Energy 9(2) 904 | spa |
dcterms.bibliographicCitation | Parhizi S, Lotfi H, Khodaei A, and Bahramirad S 2015 State of the art in research on microgrids: A review IEEE Access 3 890 | spa |
dcterms.bibliographicCitation | Montoya O D, Gil-Gonzalez W, and Grisales-Nore ´ na L F 2018 Optimal power dispatch of DGs in DC power grids: ˜ A hybrid Gauss-Seidel-genetic-algorithm methodology for solving the OPF problem WSEAS Transactions on Power Systems 13(13) 335 | spa |
dcterms.bibliographicCitation | Garces A 2018 On the convergence of Newton’s method in power flow studies for DC microgrids ´ IEEE Trans. Power Syst. 33(5) 5770 | spa |
dcterms.bibliographicCitation | Montoya O D, Gil–Gonzalez W, and Grisales–Nore ´ na L F 2018 Linear–based Newton–Raphson approximation for power ˜ flow solution in DC power grids IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM) (Salto: IEEE) | spa |
dcterms.bibliographicCitation | Montoya O D, Grisales-Norena L F, and Gil-Gonz ˜ alez W 2019 Triangular matrix formulation for power flow analysis in ´ radial DC resistive grids with CPLs IEEE Trans. Circuits Syst. II: Express Briefs Early Access 1 | spa |
dcterms.bibliographicCitation | Shen T, Li Y, and Xiang J 2018 A graph-based power flow method for balanced distribution systems Energies 11(18) 1 | spa |
dcterms.bibliographicCitation | Montoya O D 2019 On the existence of the power flow solution in DC grids with CPLs through a graph-based method IEEE Trans. Circuits Syst. II: Express Briefs Early Access 1 | spa |
dcterms.bibliographicCitation | ] Li J, Liu F, Wang Z, Low S H, and Mei S 2018 Optimal power flow in stand-alone DC microgrids IEEE Trans. Power Syst. 33(5) 5496 | spa |
dcterms.bibliographicCitation | Grisales-Norena L F, Gonzalez Montoya D, and Ramos-Paja C 2018 Optimal sizing and location of distributed generators ˜ based on PBIL and PSO techniques Energies 11(1018) 1 | spa |
dcterms.bibliographicCitation | Leon-Vargas F, Garc ´ ´ıa-Jaramillo M, and Krejci E 2019 Pre-feasibility of wind and solar systems for residential selfsufficiency in four urban locations of Colombia: Implication of new incentives included in law 1715 Renewable Energy 130 1082 | spa |
dcterms.bibliographicCitation | Dag H and Alvarado F L 1997 Toward improved uses of the conjugate gradient method for power system applications IEEE Trans. Power Syst. 12(3) 1306 | spa |
dcterms.bibliographicCitation | Montoya O D, Gil-Gonzalez W, and Garces A 2019 Power flow approximation for DC networks with constant power ´ loads via logarithmic transform of voltage magnitudes Electr. Power Syst. Res. 175 105887 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.identifier.url | https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012016/meta | |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 144810.1088/1742-6596/1448/1/012016 | |
dc.subject.keywords | Electrónica de potencia | spa |
dc.subject.keywords | Corriente continua | spa |
dc.subject.keywords | Distribución de energía eléctrica -- Corriente continua | spa |
dc.subject.keywords | Power electronics | spa |
dc.subject.keywords | DC | spa |
dc.subject.keywords | Electric Power Distribution -- Direct Current | spa |
dc.subject.keywords | Direct Current | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | Artículo | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.