Mostrar el registro sencillo del ítem

dc.contributor.authorFontalvo Herrera, Tomás José
dc.contributor.authorDe la Hoz Domínguez, Enrique José
dc.contributor.authorDe la Hoz, Efraín
dc.date.accessioned2020-10-30T21:36:58Z
dc.date.available2020-10-30T21:36:58Z
dc.date.issued2020-03-16
dc.date.submitted2020-10-30
dc.identifier.citationFontalvo-Herrera, Tomás J.; de la Hoz, Enrique; de la Hoz, Efraín (2020). Análisis de eficiencia de sector inmobiliario. Dimensión Empresarial, 18(2). DOI: 10.15665/dem.v18i2.2255spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9523
dc.description.abstractThis research an analysis of the efficiency of the real estate sector of the city of Cartagena - Colombia is developed. For the 46 companies registered as real estate agencies in the city, the techniques of principal components, data envelopment analysis and logistic regression were articulated. The results show an average efficiency of the sector of 42.33%, considering 8 companies as efficient. Five hypotheses were raised about the incidence of each financial item in the efficiency result, evidenced through the logistic regression model how the variable Operational Income is the only significant one (Value-p = 0.028). It was evidenced as an efficient real estate company should not have high values in the items of heritage and plants, property and equipment.spa
dc.description.abstractNesta investigação é desenvolvida uma análise da eficiência do setor imobiliário da cidade de Cartagena - Colômbia. Para as 46 empresas cadastradas como agências imobiliárias no município, foram articuladas as técnicas de componentes principais, Data Envelopment Analysis e regressão logística. Os resultados mostram uma eficiência média do setor de 42,33%, considerando 8 empresas como realmente eficientes. Cinco hipóteses foram levantadas sobre a incidência de cada item financeiro no resultado da eficiência, evidenciada através do modelo de regressão logística como a variável Renda Operacional é a única significativa (Valor-p = 0,028). Ficou evidenciado que uma empresa imobiliária eficiente não deve ter valores elevados nos itens de patrimônio e plantas, propriedades e equipamentos.spa
dc.description.abstractEsta investigación desarrolla un análisis de la eficiencia del sector inmobiliario de la ciudad de Cartagena – Colombia. Para las 46 empresas registradas como inmobiliarias en la ciudad se articularon las técnicas de Componentes Principales, Data Envolpment Analysis y Regresión Logística. Los resultados evidencian una eficiencia promedio del sector del 42.33%, considerando 8 empresas como realmente eficientes. Se plantearon cinco hipótesis sobre la incidencia de cada rubro financiero en el resultado de eficiencia, evidenciado a través del modelo de regresión logística como la variable Ingreso operacional es la única significativa (Valor-p = 0.028). Se evidenció como una empresa inmobiliaria eficiente no debería contar con valores altos en los rubros de patrimonio y plantas, propiedades y equipos.spa
dc.format.extent10 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceDimensión Empresarial Vol. 18 No. 2 (2020)spa
dc.titleAnálisis de Eficiencia de Sector Inmobiliariospa
dc.title.alternativeAnálise de Eficiência do Setor Imobiliáriospa
dc.title.alternativeReal Estate Sector Efficiency Analysisspa
dcterms.bibliographicCitationAbolghasem, S., Solano, F., Bedoya, C. D., Navas, L. P., Ríos, A. P., Pinzón, E. A., Medaglia, A. L. & Sarmiento, O. L. (2019) A robust DEA-centric location-based decision support system for expanding Recreovía hubs in the city of Bogotá (Colombia). Internati onal Transacti ons in Operati onal Research, 26(4), 1157–1187. DOI: 10.1111/itor.12573spa
dcterms.bibliographicCitationAcharya, D. & Sahoo, B. K. (2012) Constructing macroeconomic performance index of Indian states using DEA. Journal of Economic Studies, 39(1), 63–83. DOI: 10.1108/01443581211192116spa
dcterms.bibliographicCitationAdler, N. & Golany, B. (2002) Including principal component weights to improve discrimination in data envelopment analysis. Journal of the Operati onal Research Society, 53(9), 985–991. DOI: 10.1057/palgrave.jors.2601400spa
dcterms.bibliographicCitationAhn, H., Neumann, L. & Vazquez Novoa, N. (2012) Measuring the relative balance of DMUs. European Journal of Operati onal Research, 221(2), 417–423. DOI: 10.1016/j.ejor.2012.03.030spa
dcterms.bibliographicCitationAn, Q., Meng, F. & Xiong, B. (2018) Interval cross effi ciency for fully ranking decision making units using DEA/AHP approach. Annals of Operati ons Research, 271(2), 297–317. DOI: 10.1007/s10479-018-2766-6spa
dcterms.bibliographicCitationAraújo, C., Barros, C. P. & Wanke, P. (2014) Effi ciency determinants and capacity issues in Brazilian for-profi t hospitals. Health Care Management Science, 17(2), 126–138. DOI: 10.1007/s10729-013-9249-8spa
dcterms.bibliographicCitationAraya-Pizarro, S. C. & Rojas-Escobar, L. (2019) Technical effi ciency of the Chilean AFP. Dimensión Empresarial, 17(2) DOI: 10.15665/dem.v17i2.1934spa
dcterms.bibliographicCitationBenicio, J. & de Mello, J.C.S. (2015) Productivity Analysis and Variable Returns of Scale: DEA Effi ciency Frontier Interpretation. Procedia Computer Science, 55, 341–349. DOI: 10.1016/j.procs.2015.07.059spa
dcterms.bibliographicCitationCao, Y. Q. & Bian, Y. J. (2017) Evaluati on on the Financing Effi ciency of China’s Real Estate Listed Companies Based on DEA Model. DEStech Transactions on Engineering and Technology Research, mcee.spa
dcterms.bibliographicCitationÇelebi, D. & Bayraktar, D. (2008) An Integrated Neural Network and Data Envelopment Analysis for Supplier Evaluation Under Incomplete Information. Expert Syst. Appl., 35(4), 1698–1710. DOI: 10.1016/j.eswa.2007.08.107spa
dcterms.bibliographicCitationChediak, F. & Valencia, L. (2008) Metodología para medir la eficiencia mediante la técnica de análisis envolvente de datos-DEA. Vector, 3(1), 70–81.spa
dcterms.bibliographicCitationChen, L. & Jia, G. (2017) Environmental effi ciency analysis of China’s regional industry: A data envelopment analysis (DEA) based approach. Journal of Cleaner Producti on, 142, 846–853. DOI: 10.1016/j.jclepro.2016.01.045spa
dcterms.bibliographicCitationColl-Serrano, V., Bolos, V. & Suarez, R. B. (2019) R: Conventi onal and Fuzzy Data Envelopment Analysis (Versión 1.1.0) [Computer software]. https://CRAN.R-project.org/package=deaRspa
dcterms.bibliographicCitationCruz, N. M., Barahona, J. H. & Pérez, V. M. (2007) El deleite de la efi ciencia. Universia Business Review, 14, 56/67spa
dcterms.bibliographicCitationFontalvo, T. J., De La Hoz, E. J. & Olivos, S. (2019) Methodology of data envelopment analysis (DEA)—GLMNEt for assessment and forecasting of fi nancial effi ciency in a free trade zone—Colombia. Informacion Tecnologica, 30(5), 263–270. DOI: 10.4067/S0718-07642019000500263spa
dcterms.bibliographicCitationFontalvo-Herrera, T. J. & de la Hoz-Domínguez, E. J. (2018) Study of fi nancial effi ciency in companies certified with the BASC label using Data Envelopment Analysis: Case applied in Cali - Colombia. Entramado, 14(1), 78–87. http://revistasojs.unilibrecali.edu.co/index.php/entramado/article/view/787spa
dcterms.bibliographicCitationGranadillo, E.D.L.H., Gomez, J. M. & Herrera, T. J. F. (2019) Methodology with multivariate calculation to defi ne and evaluate fi nancial productivity profi les of the chemical sector in Colombia. Internati onal Journal of Producti vity and Quality Management, 27(2), 144–160. DOI: 10.1504/IJPQM.2019.100141spa
dcterms.bibliographicCitationHong, H. K., Ha, S. H., Shin, C. K., Park, S. C. & Kim, S. H. (1999) Evaluating the effi ciency of system integration projects using data envelopment analysis (DEA) and machine learning. Expert Systems with Applicati ons, 16(3), 283–296. DOI: 10.1016/S0957-4174(98)00077-3spa
dcterms.bibliographicCitationKhan, I. U., Ali, S. & Khan, H. N. (2018) Market Concentration, Risk-taking, and Effi ciency of Commercial Banks in Pakistan: An Application of the Two-Stage Double Bootstrap DEA. Business & Economic Review, 10(2), 65–96. https://ideas. repec.org/a/bec/imsber/v10y2018i2p65-96.htmlspa
dcterms.bibliographicCitationKumar, V. R. & Suganthi, L. (2019) Relative effi ciency of social CRM software: A hybrid fuzzy AHP/DEA approach. Internati onal Journal of Business Informati on Systems, 31(1), 27–44. DOI: 10.1504/IJBIS.2019.099525spa
dcterms.bibliographicCitationLê, S., Josse, J. & Husson, F. (2008) FactoMineR: An R Package for Multivariate Analysis. Journal of Stati sti cal Soft ware, 025(1). https://ideas.repec.org/a/jss/jstsof/v025i01.htmlspa
dcterms.bibliographicCitationLi, Z., Crook, J. & Andreeva, G. (2017) Dynamic prediction of fi nancial distress using Malmquist DEA. Expert Systems with Applicati ons, 80, 94–106. DOI: 10.1016/j.eswa.2017.03.017spa
dcterms.bibliographicCitationMojtaba G.(2019), Dealing with generalised inverse DEA models for input-output estimationi. Internati onal Journal of Producti vity and Quality Management, V28 (4), pp.511 - 521. https://doi: 10.1504/IJPQM.2019.103687spa
dcterms.bibliographicCitationMojtaba G.(2018),Effi ciency improvement and resource estimation: a tradeoff analysis, Internati onal Journal of Producti vity and Quality Management, 2018 Vol.25 No.2, pp.151 - 169 https://doi: 10.1504/IJPQM.2018.094758spa
dcterms.bibliographicCitationNasseri, S. H. & Kiaei, H. (2019) Ranking of effi cient units based on distance from virtual ideal and anti-ideal units. Internati onal Journal of Applied Decision Sciences, 12(4), 361. DOI: 10.1504/IJADS.2019.102640spa
dcterms.bibliographicCitationNgo, T. & Tsui, K. W. H. (2020) A data-driven approach for estimating airport effi ciency under endogeneity: An application to New Zealand airports. Research in Transportati on Business & Management, 100412. DOI: 10.1016/j.rtbm.2019.100412spa
dcterms.bibliographicCitationOfori-Sasu, D., Abor, J. Y. & Mensah, Lord. (2019) Funding structure and technical effi ciency: A data envelopment analysis (DEA) approach for banks in Ghana. Internati onal Journal of Managerial Finance. DOI: 10.1108/IJMF-01-2018-0003spa
dcterms.bibliographicCitationOtero, J. D. Q., Bustos, W. O. P., Aguirre, F. B. & Guardo, L. E. L. (2008) Determinantes de la efi ciencia técnica en las empresas colombiana 2001-2004. Semestre Económico, 11(22), 11–34.spa
dcterms.bibliographicCitationPeng, W. y K. Yew, (2007) Supply chain performance measurement system using DEA modeling. Industrial Management & Data Systems, 107(3), 361-381. DOI: 10.1108/02635570710734271spa
dcterms.bibliographicCitationR Core Team. (2013) R: A Language and Environment for Stati sti cal Computi ng. R Foundati on for Stati sti cal Computi ng. http://www.R-project.org/spa
dcterms.bibliographicCitationSaljoughian, M., Shirouyehzad H., Khajeh E. & Dabestani R.(2019) Evaluating the effi ciency of the commercial banks admired in Fortune 500 list; using data envelopment analysis. Internati onal Journal of Producti vity and Quality Management, 26(1), 58 - 73. DOI: 10.1504/IJPQM.2019.096991spa
dcterms.bibliographicCitationSaghafi , H., Ghiasi, M. M. & Mohammadi, A. H. (2017) Analyzing the experimental data of CO2 equilibrium absorption in the aqueous solution of DEA+MDEA with Random Forest and Leverage method. Internati onal Journal of Greenhouse Gas Control, 63, 329–337. DOI: 10.1016/j.ijggc.2017.03.028spa
dcterms.bibliographicCitationSalehi, V., Veitch, B. & Musharraf, M. (2020) Measuring and improving adaptive capacity in resilient systems by means of an integrated DEA-Machine learning approach. Applied Ergonomics, 82, 102975. DOI: 10.1016/j.apergo.2019.102975spa
dcterms.bibliographicCitationShepherd, D. A., Williams, T. A. & Patzelt, H. (2015) Thinking about entrepreneurial decision making: Review and research agenda. Journal of management, 41(1), 11–46.spa
dcterms.bibliographicCitationVisbal-Cadavid, D., Martinez-Gómez, M. & Guijarro, F. (2017) Assessing the effi ciency of public universities through DEA. A case study. Sustainability, 9(8), 1416.spa
dcterms.bibliographicCitationVisbal-Cadavid, D., Mendoza, A. M., Hoyos, I. Q., Visbal-Cadavid, D., Mendoza, A. M. & Hoyos, I. Q. (2019) Prediction of effi ciency in Colombian higher education institutions with data envelopment analysis and neural networks. Pesquisa Operacional, 39(2), 261–275. DOI: 10.1590/0101-7438.2019.039.02.0261spa
dcterms.bibliographicCitationWang, Z., Hao, H., Gao, F., Zhang, Q., Zhang, J. & Zhou, Y. (2019) Multi -atiribute decision making on reverse logistics based on DEA-TOPSIS: A study of the Shanghai End-of-life vehicles industry. Journal of Cleaner Producti on, 214, 730– 737. DOI: 10.1016/j.jclepro.2018.12.329spa
dcterms.bibliographicCitationWanke, P. & Barros, C. P. (2016) Effi ciency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression. Journal of Air Transport Management, 54, 93–103. DOI: 10.1016/j. jairtraman.2016.04.001spa
dcterms.bibliographicCitationYang, G., Fukuyama, H. & Chen, K. (2019) Investigating the regional sustainable performance of the Chinese real estate industry: A slack-based DEA approach. Omega, 84, 141–159.spa
dcterms.bibliographicCitationZhang, Z., Wang, M., Tian, L. & Zhang, W. (2017) Research on the development effi ciency of regional high-end talent in China: A complex network approach. PloS one, 12(12), e0188816. DOI: 10.1371/journal.pone.0188816.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttp://ojs.uac.edu.co/index.php/dimension-empresarial/article/view/2255
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.15665/dem.v18i2.2255
dc.subject.keywordsEficienciaspa
dc.subject.keywordsAnálisis multivariadospa
dc.subject.keywordsDEAspa
dc.subject.keywordsSector inmobiliariospa
dc.subject.keywordsEfficiencyspa
dc.subject.keywordsMultivariate analysisspa
dc.subject.keywordsReal estate sectorspa
dc.subject.keywordsAnálise multivariadaspa
dc.subject.keywordsSetor imóveisspa
dc.subject.keywordsEficiênciaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spaArtículospa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.