Mostrar el registro sencillo del ítem
Análisis de Eficiencia de Sector Inmobiliario
dc.contributor.author | Fontalvo Herrera, Tomás José | |
dc.contributor.author | De la Hoz Domínguez, Enrique José | |
dc.contributor.author | De la Hoz, Efraín | |
dc.date.accessioned | 2020-10-30T21:36:58Z | |
dc.date.available | 2020-10-30T21:36:58Z | |
dc.date.issued | 2020-03-16 | |
dc.date.submitted | 2020-10-30 | |
dc.identifier.citation | Fontalvo-Herrera, Tomás J.; de la Hoz, Enrique; de la Hoz, Efraín (2020). Análisis de eficiencia de sector inmobiliario. Dimensión Empresarial, 18(2). DOI: 10.15665/dem.v18i2.2255 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9523 | |
dc.description.abstract | This research an analysis of the efficiency of the real estate sector of the city of Cartagena - Colombia is developed. For the 46 companies registered as real estate agencies in the city, the techniques of principal components, data envelopment analysis and logistic regression were articulated. The results show an average efficiency of the sector of 42.33%, considering 8 companies as efficient. Five hypotheses were raised about the incidence of each financial item in the efficiency result, evidenced through the logistic regression model how the variable Operational Income is the only significant one (Value-p = 0.028). It was evidenced as an efficient real estate company should not have high values in the items of heritage and plants, property and equipment. | spa |
dc.description.abstract | Nesta investigação é desenvolvida uma análise da eficiência do setor imobiliário da cidade de Cartagena - Colômbia. Para as 46 empresas cadastradas como agências imobiliárias no município, foram articuladas as técnicas de componentes principais, Data Envelopment Analysis e regressão logística. Os resultados mostram uma eficiência média do setor de 42,33%, considerando 8 empresas como realmente eficientes. Cinco hipóteses foram levantadas sobre a incidência de cada item financeiro no resultado da eficiência, evidenciada através do modelo de regressão logística como a variável Renda Operacional é a única significativa (Valor-p = 0,028). Ficou evidenciado que uma empresa imobiliária eficiente não deve ter valores elevados nos itens de patrimônio e plantas, propriedades e equipamentos. | spa |
dc.description.abstract | Esta investigación desarrolla un análisis de la eficiencia del sector inmobiliario de la ciudad de Cartagena – Colombia. Para las 46 empresas registradas como inmobiliarias en la ciudad se articularon las técnicas de Componentes Principales, Data Envolpment Analysis y Regresión Logística. Los resultados evidencian una eficiencia promedio del sector del 42.33%, considerando 8 empresas como realmente eficientes. Se plantearon cinco hipótesis sobre la incidencia de cada rubro financiero en el resultado de eficiencia, evidenciado a través del modelo de regresión logística como la variable Ingreso operacional es la única significativa (Valor-p = 0.028). Se evidenció como una empresa inmobiliaria eficiente no debería contar con valores altos en los rubros de patrimonio y plantas, propiedades y equipos. | spa |
dc.format.extent | 10 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Dimensión Empresarial Vol. 18 No. 2 (2020) | spa |
dc.title | Análisis de Eficiencia de Sector Inmobiliario | spa |
dc.title.alternative | Análise de Eficiência do Setor Imobiliário | spa |
dc.title.alternative | Real Estate Sector Efficiency Analysis | spa |
dcterms.bibliographicCitation | Abolghasem, S., Solano, F., Bedoya, C. D., Navas, L. P., Ríos, A. P., Pinzón, E. A., Medaglia, A. L. & Sarmiento, O. L. (2019) A robust DEA-centric location-based decision support system for expanding Recreovía hubs in the city of Bogotá (Colombia). Internati onal Transacti ons in Operati onal Research, 26(4), 1157–1187. DOI: 10.1111/itor.12573 | spa |
dcterms.bibliographicCitation | Acharya, D. & Sahoo, B. K. (2012) Constructing macroeconomic performance index of Indian states using DEA. Journal of Economic Studies, 39(1), 63–83. DOI: 10.1108/01443581211192116 | spa |
dcterms.bibliographicCitation | Adler, N. & Golany, B. (2002) Including principal component weights to improve discrimination in data envelopment analysis. Journal of the Operati onal Research Society, 53(9), 985–991. DOI: 10.1057/palgrave.jors.2601400 | spa |
dcterms.bibliographicCitation | Ahn, H., Neumann, L. & Vazquez Novoa, N. (2012) Measuring the relative balance of DMUs. European Journal of Operati onal Research, 221(2), 417–423. DOI: 10.1016/j.ejor.2012.03.030 | spa |
dcterms.bibliographicCitation | An, Q., Meng, F. & Xiong, B. (2018) Interval cross effi ciency for fully ranking decision making units using DEA/AHP approach. Annals of Operati ons Research, 271(2), 297–317. DOI: 10.1007/s10479-018-2766-6 | spa |
dcterms.bibliographicCitation | Araújo, C., Barros, C. P. & Wanke, P. (2014) Effi ciency determinants and capacity issues in Brazilian for-profi t hospitals. Health Care Management Science, 17(2), 126–138. DOI: 10.1007/s10729-013-9249-8 | spa |
dcterms.bibliographicCitation | Araya-Pizarro, S. C. & Rojas-Escobar, L. (2019) Technical effi ciency of the Chilean AFP. Dimensión Empresarial, 17(2) DOI: 10.15665/dem.v17i2.1934 | spa |
dcterms.bibliographicCitation | Benicio, J. & de Mello, J.C.S. (2015) Productivity Analysis and Variable Returns of Scale: DEA Effi ciency Frontier Interpretation. Procedia Computer Science, 55, 341–349. DOI: 10.1016/j.procs.2015.07.059 | spa |
dcterms.bibliographicCitation | Cao, Y. Q. & Bian, Y. J. (2017) Evaluati on on the Financing Effi ciency of China’s Real Estate Listed Companies Based on DEA Model. DEStech Transactions on Engineering and Technology Research, mcee. | spa |
dcterms.bibliographicCitation | Çelebi, D. & Bayraktar, D. (2008) An Integrated Neural Network and Data Envelopment Analysis for Supplier Evaluation Under Incomplete Information. Expert Syst. Appl., 35(4), 1698–1710. DOI: 10.1016/j.eswa.2007.08.107 | spa |
dcterms.bibliographicCitation | Chediak, F. & Valencia, L. (2008) Metodología para medir la eficiencia mediante la técnica de análisis envolvente de datos-DEA. Vector, 3(1), 70–81. | spa |
dcterms.bibliographicCitation | Chen, L. & Jia, G. (2017) Environmental effi ciency analysis of China’s regional industry: A data envelopment analysis (DEA) based approach. Journal of Cleaner Producti on, 142, 846–853. DOI: 10.1016/j.jclepro.2016.01.045 | spa |
dcterms.bibliographicCitation | Coll-Serrano, V., Bolos, V. & Suarez, R. B. (2019) R: Conventi onal and Fuzzy Data Envelopment Analysis (Versión 1.1.0) [Computer software]. https://CRAN.R-project.org/package=deaR | spa |
dcterms.bibliographicCitation | Cruz, N. M., Barahona, J. H. & Pérez, V. M. (2007) El deleite de la efi ciencia. Universia Business Review, 14, 56/67 | spa |
dcterms.bibliographicCitation | Fontalvo, T. J., De La Hoz, E. J. & Olivos, S. (2019) Methodology of data envelopment analysis (DEA)—GLMNEt for assessment and forecasting of fi nancial effi ciency in a free trade zone—Colombia. Informacion Tecnologica, 30(5), 263–270. DOI: 10.4067/S0718-07642019000500263 | spa |
dcterms.bibliographicCitation | Fontalvo-Herrera, T. J. & de la Hoz-Domínguez, E. J. (2018) Study of fi nancial effi ciency in companies certified with the BASC label using Data Envelopment Analysis: Case applied in Cali - Colombia. Entramado, 14(1), 78–87. http://revistasojs.unilibrecali.edu.co/index.php/entramado/article/view/787 | spa |
dcterms.bibliographicCitation | Granadillo, E.D.L.H., Gomez, J. M. & Herrera, T. J. F. (2019) Methodology with multivariate calculation to defi ne and evaluate fi nancial productivity profi les of the chemical sector in Colombia. Internati onal Journal of Producti vity and Quality Management, 27(2), 144–160. DOI: 10.1504/IJPQM.2019.100141 | spa |
dcterms.bibliographicCitation | Hong, H. K., Ha, S. H., Shin, C. K., Park, S. C. & Kim, S. H. (1999) Evaluating the effi ciency of system integration projects using data envelopment analysis (DEA) and machine learning. Expert Systems with Applicati ons, 16(3), 283–296. DOI: 10.1016/S0957-4174(98)00077-3 | spa |
dcterms.bibliographicCitation | Khan, I. U., Ali, S. & Khan, H. N. (2018) Market Concentration, Risk-taking, and Effi ciency of Commercial Banks in Pakistan: An Application of the Two-Stage Double Bootstrap DEA. Business & Economic Review, 10(2), 65–96. https://ideas. repec.org/a/bec/imsber/v10y2018i2p65-96.html | spa |
dcterms.bibliographicCitation | Kumar, V. R. & Suganthi, L. (2019) Relative effi ciency of social CRM software: A hybrid fuzzy AHP/DEA approach. Internati onal Journal of Business Informati on Systems, 31(1), 27–44. DOI: 10.1504/IJBIS.2019.099525 | spa |
dcterms.bibliographicCitation | Lê, S., Josse, J. & Husson, F. (2008) FactoMineR: An R Package for Multivariate Analysis. Journal of Stati sti cal Soft ware, 025(1). https://ideas.repec.org/a/jss/jstsof/v025i01.html | spa |
dcterms.bibliographicCitation | Li, Z., Crook, J. & Andreeva, G. (2017) Dynamic prediction of fi nancial distress using Malmquist DEA. Expert Systems with Applicati ons, 80, 94–106. DOI: 10.1016/j.eswa.2017.03.017 | spa |
dcterms.bibliographicCitation | Mojtaba G.(2019), Dealing with generalised inverse DEA models for input-output estimationi. Internati onal Journal of Producti vity and Quality Management, V28 (4), pp.511 - 521. https://doi: 10.1504/IJPQM.2019.103687 | spa |
dcterms.bibliographicCitation | Mojtaba G.(2018),Effi ciency improvement and resource estimation: a tradeoff analysis, Internati onal Journal of Producti vity and Quality Management, 2018 Vol.25 No.2, pp.151 - 169 https://doi: 10.1504/IJPQM.2018.094758 | spa |
dcterms.bibliographicCitation | Nasseri, S. H. & Kiaei, H. (2019) Ranking of effi cient units based on distance from virtual ideal and anti-ideal units. Internati onal Journal of Applied Decision Sciences, 12(4), 361. DOI: 10.1504/IJADS.2019.102640 | spa |
dcterms.bibliographicCitation | Ngo, T. & Tsui, K. W. H. (2020) A data-driven approach for estimating airport effi ciency under endogeneity: An application to New Zealand airports. Research in Transportati on Business & Management, 100412. DOI: 10.1016/j.rtbm.2019.100412 | spa |
dcterms.bibliographicCitation | Ofori-Sasu, D., Abor, J. Y. & Mensah, Lord. (2019) Funding structure and technical effi ciency: A data envelopment analysis (DEA) approach for banks in Ghana. Internati onal Journal of Managerial Finance. DOI: 10.1108/IJMF-01-2018-0003 | spa |
dcterms.bibliographicCitation | Otero, J. D. Q., Bustos, W. O. P., Aguirre, F. B. & Guardo, L. E. L. (2008) Determinantes de la efi ciencia técnica en las empresas colombiana 2001-2004. Semestre Económico, 11(22), 11–34. | spa |
dcterms.bibliographicCitation | Peng, W. y K. Yew, (2007) Supply chain performance measurement system using DEA modeling. Industrial Management & Data Systems, 107(3), 361-381. DOI: 10.1108/02635570710734271 | spa |
dcterms.bibliographicCitation | R Core Team. (2013) R: A Language and Environment for Stati sti cal Computi ng. R Foundati on for Stati sti cal Computi ng. http://www.R-project.org/ | spa |
dcterms.bibliographicCitation | Saljoughian, M., Shirouyehzad H., Khajeh E. & Dabestani R.(2019) Evaluating the effi ciency of the commercial banks admired in Fortune 500 list; using data envelopment analysis. Internati onal Journal of Producti vity and Quality Management, 26(1), 58 - 73. DOI: 10.1504/IJPQM.2019.096991 | spa |
dcterms.bibliographicCitation | Saghafi , H., Ghiasi, M. M. & Mohammadi, A. H. (2017) Analyzing the experimental data of CO2 equilibrium absorption in the aqueous solution of DEA+MDEA with Random Forest and Leverage method. Internati onal Journal of Greenhouse Gas Control, 63, 329–337. DOI: 10.1016/j.ijggc.2017.03.028 | spa |
dcterms.bibliographicCitation | Salehi, V., Veitch, B. & Musharraf, M. (2020) Measuring and improving adaptive capacity in resilient systems by means of an integrated DEA-Machine learning approach. Applied Ergonomics, 82, 102975. DOI: 10.1016/j.apergo.2019.102975 | spa |
dcterms.bibliographicCitation | Shepherd, D. A., Williams, T. A. & Patzelt, H. (2015) Thinking about entrepreneurial decision making: Review and research agenda. Journal of management, 41(1), 11–46. | spa |
dcterms.bibliographicCitation | Visbal-Cadavid, D., Martinez-Gómez, M. & Guijarro, F. (2017) Assessing the effi ciency of public universities through DEA. A case study. Sustainability, 9(8), 1416. | spa |
dcterms.bibliographicCitation | Visbal-Cadavid, D., Mendoza, A. M., Hoyos, I. Q., Visbal-Cadavid, D., Mendoza, A. M. & Hoyos, I. Q. (2019) Prediction of effi ciency in Colombian higher education institutions with data envelopment analysis and neural networks. Pesquisa Operacional, 39(2), 261–275. DOI: 10.1590/0101-7438.2019.039.02.0261 | spa |
dcterms.bibliographicCitation | Wang, Z., Hao, H., Gao, F., Zhang, Q., Zhang, J. & Zhou, Y. (2019) Multi -atiribute decision making on reverse logistics based on DEA-TOPSIS: A study of the Shanghai End-of-life vehicles industry. Journal of Cleaner Producti on, 214, 730– 737. DOI: 10.1016/j.jclepro.2018.12.329 | spa |
dcterms.bibliographicCitation | Wanke, P. & Barros, C. P. (2016) Effi ciency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression. Journal of Air Transport Management, 54, 93–103. DOI: 10.1016/j. jairtraman.2016.04.001 | spa |
dcterms.bibliographicCitation | Yang, G., Fukuyama, H. & Chen, K. (2019) Investigating the regional sustainable performance of the Chinese real estate industry: A slack-based DEA approach. Omega, 84, 141–159. | spa |
dcterms.bibliographicCitation | Zhang, Z., Wang, M., Tian, L. & Zhang, W. (2017) Research on the development effi ciency of regional high-end talent in China: A complex network approach. PloS one, 12(12), e0188816. DOI: 10.1371/journal.pone.0188816. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | http://ojs.uac.edu.co/index.php/dimension-empresarial/article/view/2255 | |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.15665/dem.v18i2.2255 | |
dc.subject.keywords | Eficiencia | spa |
dc.subject.keywords | Análisis multivariado | spa |
dc.subject.keywords | DEA | spa |
dc.subject.keywords | Sector inmobiliario | spa |
dc.subject.keywords | Efficiency | spa |
dc.subject.keywords | Multivariate analysis | spa |
dc.subject.keywords | Real estate sector | spa |
dc.subject.keywords | Análise multivariada | spa |
dc.subject.keywords | Setor imóveis | spa |
dc.subject.keywords | Eficiência | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | Artículo | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.