Mostrar el registro sencillo del ítem

dc.contributor.authorCoronado Hernández, Óscar Enrique
dc.contributor.authorFuertes Miquel, Vicente S.
dc.contributor.authorMora-Meliá, Daniel
dc.contributor.authorSalgueiro, Yamisleydi
dc.date.accessioned2020-10-30T16:47:48Z
dc.date.available2020-10-30T16:47:48Z
dc.date.issued2020
dc.date.submitted2020-10-30
dc.identifier.citationCoronado-Hernández, Ó., Fuertes-Miquel, V., Mora-Meliá, D. and Salgueiro, Y., 2020. Quasi-static Flow Model for Predicting the Extreme Values of Air Pocket Pressure in Draining and Filling Operations in Single Water Installations. Water, 12(3), p.664.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9520
dc.description.abstractInertial models have been used by researchers to simulate the draining and filling processes in water pipelines, based on the evolution of the main hydraulic and thermodynamic variables. These models use complex differential equations, which are solved using advanced numerical codes. In this study, a quasi-static flow model is developed to study these operations in hydraulic installations. The quasi-static flow model represents a simplified formulation compared with inertial flow models, in which its numerical resolution is easier because only algebraic equations must be addressed. Experimental measurements of air pocket pressure patterns were conducted in a 4.36 m long single pipeline with an internal diameter of 42 mm. Comparisons between measured and computed air pocket pressure oscillations indicate how the quasi-static flow model can predict extreme values of air pocket pressure for experimental runs, demonstrating the possibility of selecting stiffness and pipe classes in actual pipelines using this model. Two case studies were analysed to determine the behaviour of the quasi-static flow model in large water pipelines.spa
dc.format.extent16 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceWater 2020, 12(3), 664spa
dc.titleQuasi-static flow model for predicting the extreme values of air pocket pressure in draining and filling operations in single water installationsspa
dcterms.bibliographicCitationAbreu, J.; Cabrera, E.; Izquierdo, J.; García-Serra, J. Flow Modeling in Pressurized Systems Revisited. J. Hydraul. Eng. 1999, 125, 1154–1169.spa
dcterms.bibliographicCitationIzquierdo, J.; Fuertes, V.S.; Cabrera, E.; Iglesias, P.; García-Serra, J. Pipeline Start-Up with Entrapped Air. J. Hydraul. Res. 1999, 37, 579–590.spa
dcterms.bibliographicCitationSimpson, A.R.; Wylie, E.B. Large Water-Hammer Pressures for Column Separation in Pipelines. J. Hydraul. Eng. 1991, 117, 1310–1316.spa
dcterms.bibliographicCitationZhou, L.; Liu, D.; Karney, B. Phenomenon of White Mist in Pipeline Rapidly Filling with Water with Entrapped Air Pocket. J. Hydraul. Eng. 2013, 139, 1041–1051.spa
dcterms.bibliographicCitationZhou, L.; Liu, D. Experimental Investigation of Entrapped Air Pocket in a Partially Full Water Pipe. J. Hydraul. Res. 2013, 51, 469–474.spa
dcterms.bibliographicCitationCoronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water 2017, 9, 98.spa
dcterms.bibliographicCitationCoronado-Hernández, O.E.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Effect of a Commercial Air Valve on the Rapid Filling of a Single Pipeline: A Numerical and Experimental Analysis. Water 2019, 11, 1814.spa
dcterms.bibliographicCitationVasconcelos, J.G.; Wright, S.J. Rapid Flow Startup in Filled Horizontal Pipelines. J. Hydraul. Eng. 2008, 134, 984–992.spa
dcterms.bibliographicCitationFuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Iglesias-Rey, P.L.; Mora-Melia, D. Transient Phenomena during the Emptying Process of a Single Pipe with Water-Air Interaction. J. Hydraul. Res. 2019, 57, 1–9.spa
dcterms.bibliographicCitationFuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Mora-Melia, D.; Iglesias-Rey, P.L. Hydraulic Modeling during Filling and Emptying Processes in Pressurized Pipelines: A Literature Review. Urban Water J. 2019, 16, 299–311.spa
dcterms.bibliographicCitationBesharat, M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Viseu, M.T.; Ramos, H.M. Backflow Air and Pressure Analysis in Emptying Pipeline Containing Entrapped Air Pocket. Urban Water J. 2018, 15, 769–779.spa
dcterms.bibliographicCitationBesharat, M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Viseu, M.T.; Ramos, H.M. Computational Fluid Dynamics for Sub-Atmospheric Pressure Analysis in Pipe Drainage. J. Hydraul. Res. 2019, 1–13.spa
dcterms.bibliographicCitationAmerican Water Works Association (AWWA). Manual of Water Supply Practices -M51: Air-Release, Air-Vacuum, and Combination Air Valves; American Water Works Association: Denver, CO, USA, 2001.spa
dcterms.bibliographicCitationLaanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vučkovič, S.; Hou, Q.; van’t Westende, J.M.C. Emptying of Large-Scale Pipeline by Pressurized Air. J. Hydraul. Eng. 2012, 138, 1090–1100.spa
dcterms.bibliographicCitationTijsseling, A.; Hou, Q.; Bozkus, Z.; Laanearu, J. Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. J. Press. Vessel Technol. 2016, 138, 031301.spa
dcterms.bibliographicCitationMalekpour, A.; Karney, B.; Nault, J. Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach. J. Hydraul. Eng. 2015, 142, 04015044.spa
dcterms.bibliographicCitationNoto, L.; Tucciarelli, T. Dora Algorithm for Network Flow Models with Improved Stability and Convergence Properties. J. Hydraul. Eng. 2001, 127, 380–391.spa
dcterms.bibliographicCitationZhou, L.; Liu, D.; Ou, C. Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Eng. Appl. Comput. Fluid Mech. 2011, 5, 127–140.spa
dcterms.bibliographicCitationSaemi, S.; Raisee, M.; Cervantes, M.J.; Nourbakhsh, A. Computation of Two- and Three-Dimensional Water Hammer Flows. J. Hydraul. Res. 2019, 57, 386–404.spa
dcterms.bibliographicCitationChaudhry, M.H. Applied Hydraulic Transients, 3rd ed.; Springer: New York, NY, USA, 2014.spa
dcterms.bibliographicCitationWylie, E.; Streeter, V. Fluid Transients in Systems; Prentice Hall: Englewood Cliffs, NJ, USA, 1993.spa
dcterms.bibliographicCitationApollonio, C.; Balacco, G.; Fontana, N.; Giugni, M.; Marini, G.; Piccinni, A.F. Hydraulic Transients Caused by Air Expulsion during Rapid Filling of Undulating Pipelines. Water 2016, 8, 25.spa
dcterms.bibliographicCitationCoronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. A Parametric Sensitivity Analysis of Numerically Modelled Piston-Type Filling and Emptying of an Inclined Pipeline with an Air Valve. In Proceedings of the 13th International Conference on Pressure Surges, Bordeaux, France, 14–16 November 2018; BHR Group: Bordeaux, France, 2018.spa
dcterms.bibliographicCitationWang, L.; Wang, F.; Karney, B.; Malekpour, A. Numerical Investigation of Rapid Filling in Bypass Pipelines. J. Hydraul. Res. 2017, 55, 647–656.spa
dcterms.bibliographicCitationCoronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket. Urban Water J. 2018, 15, 346–352.spa
dcterms.bibliographicCitationRamezani, L.; Karney, B.; Malekpour, A. Encouraging Effective Air Management in Water Pipelines: A Critical Review. J. Water Resour. Plan. Manag. 2016, 142.spa
dcterms.bibliographicCitationMartins, S.C.; Ramos, H.M.; Almeida, A.B. Conceptual Analogy for Modelling Entrapped Air Action in Hydraulic Systems. J. Hydraul. Res. 2015, 53, 678–686.spa
dcterms.bibliographicCitationZhou, F.; Hicks, M.; Steffler, P.M. Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. J. Hydraul. Eng. 2002, 128, 625–634.spa
dcterms.bibliographicCitationMartin, C.S. Entrapped Air in Pipelines. In Proceedings of the Second International Conference on Pressure Surges, London, UK, 22–24 September 1976.spa
dcterms.bibliographicCitationCabrera, E.; Abreu, J.; Pérez, R.; Vela, A. Influence of Liquid Length Variation in Hydraulic Transients. J. Hydraul. Res. 1992, 118, 1639–1650.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2073-4441/12/3/664
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/w12030664
dc.subject.keywordsEntrapped air pocketspa
dc.subject.keywordsDrainingspa
dc.subject.keywordsFillingspa
dc.subject.keywordsPipelinesspa
dc.subject.keywordsQuasi-static flow modelspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spaArtículospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.