Mostrar el registro sencillo del ítem

dc.contributor.authorCoronado Hernández, Jairo Rafael
dc.contributor.authorRomero-Conrado, Alfonso R.
dc.contributor.authorOchoa-González, Olmedo
dc.contributor.authorQuintero-Arango, Humberto
dc.contributor.authorVargas, Ximena
dc.contributor.authorGatica, Gustavo
dc.date.accessioned2020-10-30T16:14:10Z
dc.date.available2020-10-30T16:14:10Z
dc.date.issued2020-05-22
dc.date.submitted2020-10-29
dc.identifier.citationCoronado-Hernández J.R., Romero-Conrado A.R., Ochoa-González O., Quintero-Arango H., Vargas X., Gatica G. (2020) A Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industry. In: Saeed K., Dvorský J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science, vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_12spa
dc.identifier.isbn978-3-030-47678-6
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9515
dc.description.abstractChemical industries usually involve continuous and large-scale production processes that require demanding inventory control systems. This paper aims to show the results of the implementation of a mixed-integer programming model (MIP) based on the Generic Materials and Operations Planning Problem (GMOP) for optimizing the inventory turnover in a fertilizer company. Results showed significant improvements for Inventory Turnover Ratios and overall costs when compared with an empirical production planning method.spa
dc.format.extent11 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceLecture Notes in Computer Science, vol 12133.spa
dc.sourceComputer Information Systems and Industrial Management - 19th International Conference, CISIM 2020, Proceedings. 134.145spa
dc.titleA Generic Materials and Operations Planning Approach for Inventory Turnover Optimization in the Chemical Industryspa
dcterms.bibliographicCitationCalcium Nitrate - an overview|ScienceDirect Topics. https://www.sciencedirect.com/topics/chemistry/calcium-nitratespa
dcterms.bibliographicCitationNPK Fertilizers - an overview|ScienceDirect Topics. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/npk-fertilizersspa
dcterms.bibliographicCitationAllman, A., Palys, M.J., Daoutidis, P.: Scheduling-informed optimal design of systems with time-varying operation: a wind-powered ammonia case study. AIChE J. 65(7) (2019). https://doi.org/10.1002/aic.16434spa
dcterms.bibliographicCitationAmaran, S., et al.: Long-term turnaround planning for integrated chemical sites. Comput. Chem. Eng. 72, 145–158 (2015). https://doi.org/10.1016/j.compchemeng.2014.08.003spa
dcterms.bibliographicCitationBurawat, P.: Guidelines for improving productivity, inventory, turnover rate, and level of defects in manufacturing industry. Int. J. Econ. Perspect. 10(4), 88–95 (2016)spa
dcterms.bibliographicCitationCastillo, P.C., Castro, P.M., Mahalec, V.: Multiperiod inventory pinch algorithm for integrated planning and scheduling of oil refineries. In: Computing and Systems Technology Division 2016 - Core Programming Area at the 2016 AIChE Annual Meeting, pp. 402–404 (2016)spa
dcterms.bibliographicCitationCunha, A.L., Santos, M.O.: Mathematical modelling and solution approaches for production planning in a chemical industry. Pesquisa Operacional 37(2), 311–331 (2017). https://doi.org/10.1590/0101-7438.2017.037.02.0311spa
dcterms.bibliographicCitationDziurzanski, P., Zhao, S., Swan, J., Indrusiak, L.S., Scholze, S., Krone, K.: Solving the multi-objective flexible job-shop scheduling problem with alternative recipes for a chemical production process. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 33–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_3spa
dcterms.bibliographicCitationGarcia-Sabater, J.P., Maheut, J., Marin-Garcia, J.A.: A new formulation technique to model materials and operations planning: the generic materials and operations planning (GMOP) problem. Eur. J. Ind. Eng. 7(2), 119–147 (2013). https://doi.org/10.1504/EJIE.2013.052572spa
dcterms.bibliographicCitationKwak, J.K.: Analysis of inventory turnover as a performance measure in manufacturing industry. Processes 7(10) (2019).spa
dcterms.bibliographicCitationLi, D., Zhang, X.: How time horizons and arbitrage cost influence the turnover premium? Appl. Econ. 51(44), 4833–4848 (2019). https://doi.org/10.1080/00036846.2019.1602713spa
dcterms.bibliographicCitationMaheut, J., Garcia-Sabater, J.P.: Algorithm for complete enumeration based on a stroke graph to solve the supply network configuration and operations scheduling problem. J. Ind. Eng. Manage. 6(3 SPL.ISS), 779–795 (2013). https://doi.org/10.3926/jiem.550spa
dcterms.bibliographicCitationMaheut, J., Garcia-Sabater, J.P., Mula, J.: The generic materials and operations planning (GMOP) problem solved iteratively: a case study in multi-site context. In: Frick, J., Laugen, B.T. (eds.) APMS 2011. IAICT, vol. 384, pp. 66–73. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33980-6_8spa
dcterms.bibliographicCitationMaheut, J., Garcia-Sabater, J.P.: A parallelizable heuristic for solving the generic materials and operations planning in a supply chain network: a case study from the automotive industry. IFIP Adv. Inf. Commun. Technol. 397, 151–157 (2013). https://doi.org/10.1007/978-3-642-40352-1_20spa
dcterms.bibliographicCitationMostafaei, H., Harjunkoski, I.: Continuous-time scheduling formulation for multipurpose batch plants. AIChE J. 66(2) (2020). https://doi.org/10.1002/aic.16804spa
dcterms.bibliographicCitationNugroho, Y.K., Zhu, L.: An integration of algal biofuel production planning, scheduling, and order-based inventory distribution control systems. Biofuels, Bioprod. Biorefin. 13(4), 920–935 (2019). https://doi.org/10.1002/bbb.1982spa
dcterms.bibliographicCitationOdongo, I., Nag, B.: Achieving quality by rapid inventory turnover in the supply chain. Int. J. Prod. Qual. Manage. 19(2), 209–241 (2016). https://doi.org/10.1504/IJPQM.2016.078888spa
dcterms.bibliographicCitationOtashu, J.I., Baldea, M.: Scheduling chemical processes for frequency regulation. Appl. Energy 260 (2020). https://doi.org/10.1016/j.apenergy.2019.114125spa
dcterms.bibliographicCitationPacheco Velásquez, E.A.: Un modelo para la optimización de políticas de inventario conjuntas en cadenas de suministro. INGE CUC 9(1), 11–23 (2013). http://revistascientificas.cuc.edu.co/index.php/ingecuc/article/view/105spa
dcterms.bibliographicCitationReetz, H.F.: Fertilizantes e seu Uso Eficiente, vol. 2 (2016). www.anda.org.brspa
dcterms.bibliographicCitationRomero-Conrado, A.R., Coronado-Hernandez, J.R., Rius-Sorolla, G., García-Sabater, J.P.: A Tabu list-based algorithm for capacitated multilevel IoT-sizing with alternate bills of materials and co-production environments. Appl. Sci. (Switz.) 9(7), 1464 (2019). https://doi.org/10.3390/app9071464spa
dcterms.bibliographicCitationSabah, B., Nikolay, T., Sylverin, K.T.: Production planning under demand uncertainty using Monte Carlo simulation approach: a case study in fertilizer industry. In: Proceedings of the 2019 International Conference on Industrial Engineering and Systems Management, IESM 2019, pp. 1–6. Institute of Electrical and Electronics Engineers (IEEE), January 2019). https://doi.org/10.1109/IESM45758.2019.8948112spa
dcterms.bibliographicCitationTalay, I., Özdemir-Akyıldırım, Ö.: Optimal procurement and production planning for multi-product multi-stage production under yield uncertainty. Eur. J. Oper. Res. 275(2), 536–551 (2019). https://doi.org/10.1016/j.ejor.2018.11.069spa
dcterms.bibliographicCitationWiemer, P.: Production planning and scheduling in chemical and pharmaceutical industry. In: European Control Conference, ECC 1999 - Conference Proceedings, pp. 4836–4841 (2015). https://doi.org/10.23919/ecc.1999.7100102spa
dcterms.bibliographicCitationYang, L.: Design of production management system in ERP of coal chemical industry. Chem. Eng. Trans. 65, 475–480 (2018). https://doi.org/10.3303/CET1865080spa
dcterms.bibliographicCitationZheng, H.: Chemical enterprise production management system based on ERP. Chem. Eng. Trans. 62, 763–768 (2017). https://doi.org/10.3303/CET1762128spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/978-3-030-47679-3_12
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1007/978-3-030-47679-3_12
dc.subject.keywordsInventory turnoverspa
dc.subject.keywordsProduction planningspa
dc.subject.keywordsGMOPspa
dc.subject.keywordsFertilizersspa
dc.subject.keywordsChemical industryspa
dc.subject.keywordsOptimizationspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spaOtrospa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.