Mostrar el registro sencillo del ítem

dc.contributor.authorGil-González, Walter
dc.contributor.authorMontoya, Oscar D.
dc.contributor.authorGarcés, Alejandro
dc.date.accessioned2020-10-30T14:49:11Z
dc.date.available2020-10-30T14:49:11Z
dc.date.issued2020-07-30
dc.date.submitted2020-10-28
dc.identifier.citationWalter Gil-González, Oscar D. Montoya & Alejandro Garces (2020) Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design, Electric Power Components and Systems, 48:4-5, 447-458, DOI: 10.1080/15325008.2020.1793831spa
dc.identifier.issn1532-5008
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9504
dc.description.abstractA bilinear PI control based on passivity theory for the adequate integration of distributed energy resources (DERs) in ac microgrids is presented in this paper. DERs are integrated into the grid by voltage source converters (VSC), the most common and suitable technology for this type of application. The proposed control guarantees asymptotically stable operation for the dynamical system under closed-loop operating scenarios via Hamiltonian and Lyapunov formulations. ZP load models and π-model of the transmission lines are considered in the stability analysis of the microgrid. Conventional PI control is also implemented for comparative purposes. Simulation results in Matlab/Simulink demonstrate the effectiveness and stability of the proposed control’s performance in a radial microgrid composed of a photovoltaic generator, a supercapacitor energy storage (SCES) system and unbalanced loads.spa
dc.description.sponsorshipMinisterio de Cienciaspa
dc.format.extent11 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceElectric Power Components and Systems Volume 48, 2020 - Issue 4-5spa
dc.titleBilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Designspa
dcterms.bibliographicCitationO.Ellabban, H.Abu-Rub and F.Blaabjerg , “Renewable energy resources: Current status, future prospects and their enabling technology,” Renew. Sustain. Energy Rev. , vol. 39, pp. 748–764, 2014. DOI: 10.1016/j.rser.2014.07.113.spa
dcterms.bibliographicCitationF.Katiraei, R.Iravani, N.Hatziargyriou and A.Dimeas , “Microgrids management,” IEEE Power Energy Mag. , vol. 6, no. 3, pp. 54–65, 2008. DOI: 10.1109/MPE.2008.918702.spa
dcterms.bibliographicCitationA.Keyhani , Design of Smart Power Grid Renewable Energy Systems . United States of America: John Wiley & Sons, 2016.spa
dcterms.bibliographicCitationE.Planas, J.Andreu, J. I.Gárate, I. M.de Alegría and E.Ibarra , “AC and DC technology in microgrids: A review, Renew,” Sustain. Energy Rev. , vol. 43, pp. 726–749, 2015. DOI: 10.1016/j.rser.2014.11.067.spa
dcterms.bibliographicCitationS. M.Kaviri, M.Pahlevani, P.Jain and A.Bakhshai , “A review of AC microgrid control methods,” in 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), IEEE, 2017, pp. 1–8. DOI: 10.1109/PEDG.2017.7972498.spa
dcterms.bibliographicCitationO. D. M.Giraldo, W. J. G.González, A. G.Ruiz, A. E.Mejía and L. F. G.Noreña , “Nonlinear control for battery energy storage systems in power grids,” in 2018 IEEE Green Technologies Conference (GreenTech), IEEE, 2018, pp. 65–70.spa
dcterms.bibliographicCitationX.Luo, J.Wang, M.Dooner and J.Clarke , “Overview of current development in electrical energy storage technologies and the application potential in power system operation,” Appl. Energy , vol. 137, pp. 511–536, 2015. DOI: 10.1016/j.apenergy.2014.09.081.spa
dcterms.bibliographicCitationH.Han, X.Hou, J.Yang, J.Wu, M.Su and J. M.Guerrero , “Review of power sharing control strategies for islanding operation of AC microgrids,” IEEE Trans. Smart Grid , vol. 7, no. 1, pp. 200–215, 2016. DOI: 10.1109/TSG.2015.2434849.spa
dcterms.bibliographicCitationJ. M.Guerrero, P. C.Loh, T.-L.Lee and M.Chandorkar , “Advanced control architectures for intelligent microgrids–Part II: Power quality, energy storage, and AC/DC microgrids,” IEEE Trans. Ind. Electron. , vol. 60, no. 4, pp. 1263–1270, 2013. DOI: 10.1109/TIE.2012.2196889.spa
dcterms.bibliographicCitationX.Wang, J. M.Guerrero and Z.Chen , “Control of grid interactive AC microgrids,” in 2010 IEEE International Symposium on Industrial Electronics, IEEE, 2010, pp. 2211–2216.spa
dcterms.bibliographicCitationV.Nasirian, Q.Shafiee, J. M.Guerrero, F. L.Lewis and A.Davoudi , “Droop-free distributed control for AC microgrids,” IEEE Trans. Power Electron. , vol. 31, no. 2, pp. 1600–1617, 2016. DOI: 10.1109/TPEL.2015.2414457.spa
dcterms.bibliographicCitationO. D.Montoya, A.Garcés and F. M.Serra , “DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators,” J. Energy Storage , vol. 16, pp. 250–258, 2018. DOI: 10.1016/j.est.2018.01.014.spa
dcterms.bibliographicCitationF. M.Serra, C. H. D.Angelo and D. G.Forchetti , “Interconnection and damping assignment control of a three-phase front end converter,” Int. J. Elec. Power , vol. 60, pp. 317–324, 2014. DOI: 10.1016/j.ijepes.2014.03.033.spa
dcterms.bibliographicCitationF. M.Serra and C. H. D.Angelo , “IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions,” Electr. Power Syst. Res. , vol. 142, pp. 12–19, 2017. DOI: 10.1016/j.epsr.2016.08.041.spa
dcterms.bibliographicCitationO. D.Montoya, W.Gil-González and A.Garces , “Control for EESS in Three–Phase Microgrids Under Time–Domain Reference Frame via PBC Theory,” IEEE Trans. Circuits Syst. II , vol. 66, no. 12, pp. 2007–2011, 2019. DOI: 10.1109/TCSII.2019.2893842.spa
dcterms.bibliographicCitationS.Vazquez, J.Rodriguez, M.Rivera, L. G.Franquelo and M.Norambuena , “Model predictive control for power converters and drives: Advances and trends,” IEEE Trans. Ind. Electron. , vol. 64, no. 2, pp. 935–947, 2017. DOI: 10.1109/TIE.2016.2625238.spa
dcterms.bibliographicCitationA.Parisio, E.Rikos and L.Glielmo , “A model predictive control approach to microgrid operation optimization,” IEEE Trans. Contr. Syst. Technol. , vol. 22, no. 5, pp. 1813–1827, 2014. DOI: 10.1109/TCST.2013.2295737.spa
dcterms.bibliographicCitationR.Aghatehrani and R.Kavasseri , “Sensitivity-analysis-based sliding mode control for voltage regulation in microgrids,” IEEE Trans. Sustain. Energy , vol. 4, no. 1, pp. 50–57, 2013. DOI: 10.1109/TSTE.2012.2197870.spa
dcterms.bibliographicCitationM.Cucuzzella, G. P.Incremona and A.Ferrara , “Design of robust higher order sliding mode control for microgrids,” IEEE J. Emerg. Sel. Topics Circuits Syst. , vol. 5, no. 3, pp. 393–401, 2015. DOI: 10.1109/JETCAS.2015.2450411.spa
dcterms.bibliographicCitationG.Kyriakarakos, A. I.Dounis, K. G.Arvanitis and G.Papadakis , “A fuzzy logic energy management system for polygeneration microgrids,” Ren. Energy , vol. 41, pp. 315–327, 2012. DOI: 10.1016/j.renene.2011.11.019.spa
dcterms.bibliographicCitationR.Cisneros, M.Pirro, G.Bergna, R.Ortega, G.Ippoliti and M.Molinas , “Global tracking passivity-based pi control of bilinear systems: Application to the interleaved boost and modular multilevel converters,” Control Eng. Pract. , vol. 43, pp. 109–119, 2015. DOI: 10.1016/j.conengprac.2015.07.002.spa
dcterms.bibliographicCitationR.Teodorescu, M.Liserre and P.Rodriguez , Grid Converters for Photovoltaic and Wind Power Systems . United Kingdom: Wiley-IEEE, Wiley, 2011.spa
dcterms.bibliographicCitationS.Golestan, J. M.Guerrero and J. C.Vasquez , “Three-phase PLLs: A review of recent advances,” IEEE Trans. Power Electron. , vol. 32, no. 3, pp. 1894–1907, 2017. DOI: 10.1109/TPEL.2016.2565642.spa
dcterms.bibliographicCitationJ.Machowski, J. W.Bialek and J. R.Bumby , Power System Dynamics: Stability and Control , 2nd ed. United Kingdom: John Wily & Sons, 2008.spa
dcterms.bibliographicCitationO. D.Montoya, A.Garces, S.Avila-Becerril, G.Espinosa-Pérez and F. M.Serra , “Stability analysis of single-phase low-voltage AC microgrids with constant power terminals,” IEEE Trans. Circuits Syst. II , vol. 66, no. 7, pp. 1212–1216, 2019. DOI: 10.1109/TCSII.2018.2878188.spa
dcterms.bibliographicCitationIEEE Standard for Interconnecting Distributed Resources with Electric Power Systems—Amendment 1, IEEE Std 1547a-2014 (Amendment to IEEE Std 1547-2003), 2014, pp. 1–16.spa
dcterms.bibliographicCitationW.Gil-González, O. D.Montoya and A.Garces , “Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach,” Int. J. Elec. Power , vol. 110, pp. 588–597, 2019. DOI: 10.1016/j.ijepes.2019.03.042.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.tandfonline.com/doi/abs/10.1080/15325008.2020.1793831
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1080/15325008.2020.1793831
dc.subject.keywordsBilinear PI controlspa
dc.subject.keywordsLyapunov’s stabilityspa
dc.subject.keywordsPhotovoltaic generatorspa
dc.subject.keywordsAC microgridsspa
dc.subject.keywordsSupercapacitor energy storage systemspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spaArtículospa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.