Mostrar el registro sencillo del ítem
Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations
dc.contributor.author | Fuertes Miquel, Vicente S. | |
dc.contributor.author | Coronado Hernández, Óscar Enrique | |
dc.contributor.author | Ponz-Carcelén Roman | |
dc.contributor.other | Romero, Guillermo | |
dc.contributor.other | Ponz-Carcelén, Román | |
dc.contributor.other | Biel-Sanchis, Francisco | |
dc.date.accessioned | 2020-10-29T21:25:24Z | |
dc.date.available | 2020-10-29T21:25:24Z | |
dc.date.issued | 2020-04-13 | |
dc.date.submitted | 2020-10-28 | |
dc.identifier.citation | Guillermo Romero, Vicente S. Fuertes-Miquel, Óscar E. Coronado-Hernández, Román Ponz-Carcelén & Francisco Biel-Sanchis (2020) Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations, Urban Water Journal, 17:6, 568-575, DOI: 10.1080/1573062X.2020.1800762 | spa |
dc.identifier.issn | 1573-062X | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9503 | |
dc.description.abstract | During the filling process in pressurized hydraulic systems, sudden pressure changes generated inside the pipes can cause significant damage. To avoid these excessive overpressures, air valves should be installed to allow air exchange between the inside and outside during the filling process. This study presents a mathematical model to analyse the hydraulic transients during filling processes. This model, which has already been validated in small laboratories, is now applied to real large-scale systems that consist of DN400 and DN600 pipelines from Empresa Mixta Metropolitana S.A (EMIMET – Group Global Omnium), which is the company that manages the water supply of the metropolitan area of Valencia (from the Drinking Water Treatment Station to the municipalities). The mathematical model for large pipes is validated by comparing the experimental measurements and the results of model. | spa |
dc.format.extent | 7 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Urban Water Journal Volume 17, 2020 - Issue 6 | spa |
dc.title | Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations | spa |
dcterms.bibliographicCitation | Abreu, J. , E.Cabrera, J.Izquierdo, and J.García-Serra . 1999. “Flow Modeling in Pressurized Systems Revisited.” Journal of Hydraulic Engineering 125 (11): 1154–1169. doi:10.1061/(ASCE)0733-9429(1999)125:11(1154). | spa |
dcterms.bibliographicCitation | Apollonio, C. , G.Balacco, N.Fontana, M.Giugni, G.Marini, and A. F.Piccinni . 2016. “Hydraulic Transients Caused by Air Expulsion during Rapid Filling of Undulating Pipelines.” Water 8 (1): 25. doi:10.3390/w8010025. | spa |
dcterms.bibliographicCitation | AWWA . 2001. American Water Works Association (AWWA). Manual of Water Supply Practices - M51: Air-Release, Air-Vacuum, and Combination Air Valves . 1st ed. Denver, CO: Denver. | spa |
dcterms.bibliographicCitation | Balacco, G. , C.Apollonio, and A. F.Piccinni . 2015. “Experimental Analysis of Air Valve Behaviour during Hydraulic Transients.” Journal of Applied Water Engineering and Research 3 (1): 3–11. doi:10.1080/23249676.2015.1032374. | spa |
dcterms.bibliographicCitation | Balacco, G. , N.Fontana, C.Apollonio, M.Giugni, G.Marini, and A. F.Piccinni . 2018. “Pressure Surges during Filling of Partially Empty Undulating Pipelines.” ISH Journal of Hydraulic Engineering 1 (9). doi:10.1080/09715010.2018.1548309. | spa |
dcterms.bibliographicCitation | Besharat, M. , R.Tarinejad, M. T.Aalami, and H. M.Ramos . 2016. “Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis.” Water Resources Management 30 (8): 2687–2702. doi:10.1007/s11269-016-1310-1. | spa |
dcterms.bibliographicCitation | Chaudhry, M. H. 2014. Applied Hydraulic Transients. Columbia . SC, USA: Springer. | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O. E. , M.Besharat, V. S.Fuertes-Miquel, and H. M.Ramos . 2019. “Effect of a Commercial Air Valve on the Rapid Filling of a Single Pipeline: A Numerical and Experimental Analysis.” Water 11 (9): 1814. | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O. E. , V. S.Fuertes-Miquel, M.Besharat, and H. M.Ramos . 2018. “Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket.” Urban Water Journal 15 (4): 346–352. doi:10.1080/1573062X.2018.1475578. | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V. S. 2001. “Hydraulic Transients with Entrapped Air Pockets.” PhD diss., Department of Hydraulic Engineering, Polytechnic University of Valencia, Spain. | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V. S. , O. E.Coronado-Hernández, P. L.Iglesias-Rey, and D.Mora-Meliá . 2019b. “Transient Phenomena during the Emptying Process of a Single Pipe with Water-air Interaction.” Journal of Hydraulic Research 57 (3): 318–326. doi:10.1080/00221686.2018.1492465. | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V. S. , O. E.Coronado-Hernández, D.Mora-Meliá, and P. L.Iglesias-Rey . 2019a. “Hydraulic Modelling during Filling and Emptying Processes in Pressurized Pipelines: A Literature Review.” Urban Water Journal 16 (4): 299–311. doi:10.1080/1573062X.2019.1669188. | spa |
dcterms.bibliographicCitation | García-Todolí, S. , P. L.Iglesias-Rey, D.Mora-Meliá, F. J.Martínez-Solano, and V. S.Fuertes-Miquel . 2018. “Computational Determination of Air Valves Capacity Using CFD Techniques.” Water 10 (10): 1433. doi:10.3390/w10101433. | spa |
dcterms.bibliographicCitation | Hou, Q. , A.Tijsseling, J.Laanearu, I.Annus, T.Koppel, A.Bergant, S.Vuković, A.Anderson, and J.Van’tWestende . 2014. “Experimental Investigation on Rapid Filling of a Large-scale Pipeline.” Journal of Hydraulic Engineering 140 (11): 04014053. doi:10.1061/(ASCE)HY.1943-7900.0000914. | spa |
dcterms.bibliographicCitation | Izquierdo, J. , V. S.Fuertes, E.Cabrera, P. L.Iglesias, and J.García-Serra . 1999. “Pipeline Start-up with Entrapped Air.” Journal of Hydraulic Research 37 (5): 579–590. doi:10.1080/00221689909498518. | spa |
dcterms.bibliographicCitation | Laanearu, J. , I.Annus, T.Koppel, A.Bergant, S.Vučković, Q.Hou, A. S.Tijsseling, A.Anderson, and J. M. C.Van’t Westende . 2012. “Emptying of Large-scale Pipeline by Pressurized Air.” Journal of Hydraulic Engineering 138 (12): 1090–1100. doi:10.1061/(ASCE)HY.1943-7900.0000631. | spa |
dcterms.bibliographicCitation | Leon, A. , M.Ghidaoui, A.Schmidt, and M.Garcia . 2010. “A Robust Two-equation Model for Transient-mixed Flows.” Journal of Hydraulic Research 48 (1): 44–56. doi:10.1080/00221680903565911. | spa |
dcterms.bibliographicCitation | Liou, C. , and W. A.Hunt . 1996. “Filling of Pipelines with Undulating Elevation Profiles.” Journal of Hydraulic Engineering 122 (10): 534–539. doi:10.1061/(ASCE)0733-9429(1996)122:10(534). | spa |
dcterms.bibliographicCitation | Malekpour, A. , and B. W.Karney . 2019. “Complex Interactions of Water, Air and Its Controlled Removal during Pipeline Filling Operations.” Fluid Mechanics Research International Journal 3 (1): 4‒15. | spa |
dcterms.bibliographicCitation | Malekpour, A. , B. W.Karney, and J.Nault . 2016. “Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach.” Journal of Hydraulic Engineering 142 (2): 04015044. doi:10.1061/(ASCE)HY.1943-7900.0001067. | spa |
dcterms.bibliographicCitation | Martins, N. M. C. , J. N.Delgado, H. M.Ramos, and D. I. C.Covas . 2017. “Maximum Transient Pressures in a Rapidly Filling Pipeline with Entrapped Air Using a CFD Model.” Journal of Hydraulic Research 55 (4): 1–14. doi:10.1080/00221686.2016.1275046. | spa |
dcterms.bibliographicCitation | Martins, S. C. , H. M.Ramos, and A. B.Almeida . 2015. “Conceptual Analogy for Modelling Entrapped Air Action in Hydraulic Systems.” Journal of Hydraulic Research 53 (5): 678–686. doi:10.1080/00221686.2015.1077353. | spa |
dcterms.bibliographicCitation | Ramezani, L. , B.Karney, and A.Malekpour . 2015. “The Challenge of Air Valves: A Selective Critical Literature Review.” Journal of Water Resources Planning and Management 141 (10): 04015017. doi:10.1061/(ASCE)WR.1943-5452.0000530. | spa |
dcterms.bibliographicCitation | Ramezani, L. , B.Karney, and A.Malekpour . 2016. “Encouraging Effective Air Management in Water Pipelines: A Critical Review.” Journal of Water Resources Planning and Management 142 (12): 04016055. doi:10.1061/(ASCE)WR.1943-5452.0000695. | spa |
dcterms.bibliographicCitation | Saemi, S. , M.Raisee, M. J.Cervantes, and A.Nourbakhsh . 2019. “Computation of Two- and Three-dimensional Water Hammer Flows.” Journal of Hydraulic Research 57 (3): 386–404. doi:10.1080/00221686.2018.1459892. | spa |
dcterms.bibliographicCitation | Tijsseling, A. , Q.Hou, Z.Bozkuş, and J.Laanearu . 2016. “Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines.” Journal of Pressure Vessel Technology 138 (3): 031301. doi:10.1115/1.4031508. | spa |
dcterms.bibliographicCitation | Tran, P. 2017. “Pressure Transients Caused by Air-valve Closure while Filling Pipelines.” Journal of Hydraulic Engineering 143 (2): 04016082. doi:10.1061/(ASCE)HY.1943-7900.0001245. | spa |
dcterms.bibliographicCitation | Trindade, B. C. , and J. G.Vasconcelos . 2013. “Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions.” Journal of Hydraulic. Engineering 139 (9): 921–934. doi:10.1061/(ASCE)HY.1943-7900.0000757. | spa |
dcterms.bibliographicCitation | Vasconcelos, J. G. , and S. J.Wright . 2008. “Rapid Flow Startup in Filled Horizontal Pipelines.” Journal of Hydraulic Engineering 134 (7): 984–992. doi:10.1061/(ASCE)0733-9429(2008)134:7(984). | spa |
dcterms.bibliographicCitation | Wang, L. , F.Wang, B.Karney, and A.Malekpour . 2017. “Numerical Investigation of Rapid Filling in Bypass Pipelines.” Journal of Hydraulic Research 55 (5): 647–656. doi:10.1080/00221686.2017.1300193. | spa |
dcterms.bibliographicCitation | Wylie, E. , and V.Streeter . 1993. Fluid Transients in Systems . Englewood Cliffs, NJ: Ed. Prentice Hall. | spa |
dcterms.bibliographicCitation | Zhou, F. , M.Hicks, and P. M.Steffler . 2002. “Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air.” Journal of Hydraulic Engineering 128 (6): 625–634. doi:10.1061/(ASCE)0733-9429(2002)128:6(625). | spa |
dcterms.bibliographicCitation | Zhou, L. , and D.Liu . 2013b. “Experimental Investigation of Entrapped Air Pocket in a Partially Full Water Pipe.” Journal of Hydraulic Research 51 (4): 469–474. doi:10.1080/00221686.2013.785985. | spa |
dcterms.bibliographicCitation | Zhou, L. , D.Liu, and B.Karney . 2013a. “Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pocket.” Journal of Hydraulic Engineering 139 (10): 1041–1051. doi:10.1061/(ASCE)HY.1943-7900.0000765. | spa |
dcterms.bibliographicCitation | Zhou, L. , D.Liu, B.Karney, and Q.Zhang . 2011. “Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines.” Journal of Hydraulic Engineering 137 (12): 1686–1692. doi:10.1061/(ASCE)HY.1943-7900.0000460. | spa |
dcterms.bibliographicCitation | Zhou, L. , D.Liu, and C.Ou . 2011. “Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model.” Engineering Applications of Computational Fluid Mechanics 5 (1): 127–140. doi:10.1080/19942060.2011.11015357. | spa |
datacite.rights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://www.tandfonline.com/doi/abs/10.1080/1573062X.2020.1800762 | |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1080/1573062X.2020.1800762 | |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | Artículo | spa |
dc.audience | Investigadores | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.publisher.discipline | Ingeniería Civil | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.