Mostrar el registro sencillo del ítem
Generating density maps for convolutional neural network-based cell counting in specular microscopy images
dc.contributor.author | Sierra, J S | |
dc.contributor.author | Pineda, J | |
dc.contributor.author | Viteri, E | |
dc.contributor.author | Tello, Alejandro | |
dc.contributor.author | Millán, M S | |
dc.contributor.author | Galvis, V | |
dc.contributor.author | Romero, L A | |
dc.contributor.author | Marrugo Hernández, Andrés Guillermo | |
dc.date.accessioned | 2020-09-22T15:10:18Z | |
dc.date.available | 2020-09-22T15:10:18Z | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-09-18 | |
dc.identifier.citation | Sierra, J., Pineda, J., Viteri, E., Tello, A., Millán, M., & Galvis, V. et al. (2020). Generating density maps for convolutional neural network-based cell counting in specular microscopy images. Journal Of Physics: Conference Series, 1547, 012019. doi: 10.1088/1742-6596/1547/1/012019 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9390 | |
dc.description.abstract | Accurate endothelial cell density with specular microscopy is essential for correct clinical assessment of the cornea. Commercial specular microscopes incorporate automated cell segmentation methods to estimate cell density. However, these methods are prone to false cell detections in pathological corneas. This project aims to obtain a reliable automated cell density from specular microscopy images of both healthy and pathological corneas with convolutional neural networks. Convolutional neural networks require labeled datasets. Thus, we developed custom software for producing a curated dataset of labeled ground-truth images and cell density maps. In this paper, we implemented a fully convolutional regression network to predict the cell density map from the input microscopy image. Encouraging preliminary results show the potential of the method. This approach may pave the way for dealing with the variability of corneal endothelial cell images. | spa |
dc.format.extent | 7 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Journal of Physics: Conference Series 1547 (2020) 012019 | spa |
dc.title | Generating density maps for convolutional neural network-based cell counting in specular microscopy images | spa |
dcterms.bibliographicCitation | Ruggeri A, Grisan E and Jaroszewski J 2005 British Journal of Ophthalmology 89(3) 306 | spa |
dcterms.bibliographicCitation | Giasson C J, Graham A, Blouin J F, Solomon L, Gresset J, Melillo M and Polse K A 2005 Eye & Contact Lens 31(4) 158 | spa |
dcterms.bibliographicCitation | Maruoka S, Nakakura S, Matsuo N, Yoshitomi K, Katakami C, Tabuchi H, Chikama T and Kiuchi Y 2017 International Ophthalmology 35 1 | spa |
dcterms.bibliographicCitation | Russell S J and Norvig P 2016 Artificial Intelligence: A Modern Approach (Malaysia: Pearson Education Limited) | spa |
dcterms.bibliographicCitation | Xie W, Noble J A and Zisserman A 2018 Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 6(3) 283 | spa |
dcterms.bibliographicCitation | Ruggeri A, Scarpa F, De Luca M, Meltendorf C and Schroeter J 2010 British Journal of Ophthalmology 94(5) 643 | spa |
dcterms.bibliographicCitation | Al-Fahdawi S, Qahwaji R, Al-Waisy A S, Ipson S, Ferdousi M, Malik R A and Brahma A 2018 Computer Methods and Programs in Biomedicine 160 11 | spa |
dcterms.bibliographicCitation | Scarpa F and Ruggeri A 2016 Automated morphometric description of human corneal endothelium from in-vivo specular and confocal microscopy 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Orlando: IEEE) pp 1296–1299 | spa |
dcterms.bibliographicCitation | Scarpa F and Ruggeri A 2016 Cornea 35(9) 1222 | spa |
dcterms.bibliographicCitation | Piorkowski A, Nurzynska K, Boldak C, Reska D and Gronkowska-Serafin J 2015 Journal of Medical Informatics & Technologies 24 155 | spa |
dcterms.bibliographicCitation | Piorkowski A, Nurzynska K, Gronkowska-Serafin J, Selig B, Boldak C and Reska D 2017 Computerized Medical Imaging and Graphics 55 13 | spa |
dcterms.bibliographicCitation | Daniel M C, Atzrodt L, Bucher F, Wacker K, B¨ohringer S, Reinhard T and B¨ohringer D 2019 Scientific Reports (1) 4752 | spa |
dcterms.bibliographicCitation | Weidi X, Noble J A and Zisserman A 2015 Microscopy cell counting with fully convolutional regression networks 1st Deep Learning Workshop, Medical Image Computing and Computer-Assisted Intervention (MICCAI) (Munich: The Medical Image Computing and Computer Assisted Intervention Society) | spa |
dcterms.bibliographicCitation | Lempitsky V and Zisserman A 2010 Learning to count objects in images Advances in Neural Information Processing Systems 23th International Conference on Neural Information Processing Systems (NIPS) (Canada: Neural Information Processing Systems Foundation Inc.) pp 1324–1332 | spa |
dcterms.bibliographicCitation | Kang D, Ma Z and Chan A B 2018 IEEE Transactions on Circuits and Systems for Video Technology 29(5) 1408 | spa |
dcterms.bibliographicCitation | Chollet F et al. 2015 Keras: Machine Learning in Python (San Francisco: GitHub Inc.) | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://iopscience.iop.org/article/10.1088/1742-6596/1547/1/012019/meta | |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1088/1742-6596/1547/1/012019 | |
dc.subject.keywords | Microscopios especulares | spa |
dc.subject.keywords | Células en córneas | spa |
dc.subject.keywords | Densidad celular automatizada | spa |
dc.subject.keywords | Software | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | Otro | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.