Mostrar el registro sencillo del ítem

dc.contributor.authorSierra, J S
dc.contributor.authorPineda, J
dc.contributor.authorViteri, E
dc.contributor.authorTello, Alejandro
dc.contributor.authorMillán, M S
dc.contributor.authorGalvis, V
dc.contributor.authorRomero, L A
dc.contributor.authorMarrugo Hernández, Andrés Guillermo
dc.date.accessioned2020-09-22T15:10:18Z
dc.date.available2020-09-22T15:10:18Z
dc.date.issued2020
dc.date.submitted2020-09-18
dc.identifier.citationSierra, J., Pineda, J., Viteri, E., Tello, A., Millán, M., & Galvis, V. et al. (2020). Generating density maps for convolutional neural network-based cell counting in specular microscopy images. Journal Of Physics: Conference Series, 1547, 012019. doi: 10.1088/1742-6596/1547/1/012019spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9390
dc.description.abstractAccurate endothelial cell density with specular microscopy is essential for correct clinical assessment of the cornea. Commercial specular microscopes incorporate automated cell segmentation methods to estimate cell density. However, these methods are prone to false cell detections in pathological corneas. This project aims to obtain a reliable automated cell density from specular microscopy images of both healthy and pathological corneas with convolutional neural networks. Convolutional neural networks require labeled datasets. Thus, we developed custom software for producing a curated dataset of labeled ground-truth images and cell density maps. In this paper, we implemented a fully convolutional regression network to predict the cell density map from the input microscopy image. Encouraging preliminary results show the potential of the method. This approach may pave the way for dealing with the variability of corneal endothelial cell images.spa
dc.format.extent7 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceJournal of Physics: Conference Series 1547 (2020) 012019spa
dc.titleGenerating density maps for convolutional neural network-based cell counting in specular microscopy imagesspa
dcterms.bibliographicCitationRuggeri A, Grisan E and Jaroszewski J 2005 British Journal of Ophthalmology 89(3) 306spa
dcterms.bibliographicCitationGiasson C J, Graham A, Blouin J F, Solomon L, Gresset J, Melillo M and Polse K A 2005 Eye & Contact Lens 31(4) 158spa
dcterms.bibliographicCitationMaruoka S, Nakakura S, Matsuo N, Yoshitomi K, Katakami C, Tabuchi H, Chikama T and Kiuchi Y 2017 International Ophthalmology 35 1spa
dcterms.bibliographicCitationRussell S J and Norvig P 2016 Artificial Intelligence: A Modern Approach (Malaysia: Pearson Education Limited)spa
dcterms.bibliographicCitationXie W, Noble J A and Zisserman A 2018 Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 6(3) 283spa
dcterms.bibliographicCitationRuggeri A, Scarpa F, De Luca M, Meltendorf C and Schroeter J 2010 British Journal of Ophthalmology 94(5) 643spa
dcterms.bibliographicCitationAl-Fahdawi S, Qahwaji R, Al-Waisy A S, Ipson S, Ferdousi M, Malik R A and Brahma A 2018 Computer Methods and Programs in Biomedicine 160 11spa
dcterms.bibliographicCitationScarpa F and Ruggeri A 2016 Automated morphometric description of human corneal endothelium from in-vivo specular and confocal microscopy 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Orlando: IEEE) pp 1296–1299spa
dcterms.bibliographicCitationScarpa F and Ruggeri A 2016 Cornea 35(9) 1222spa
dcterms.bibliographicCitationPiorkowski A, Nurzynska K, Boldak C, Reska D and Gronkowska-Serafin J 2015 Journal of Medical Informatics & Technologies 24 155spa
dcterms.bibliographicCitationPiorkowski A, Nurzynska K, Gronkowska-Serafin J, Selig B, Boldak C and Reska D 2017 Computerized Medical Imaging and Graphics 55 13spa
dcterms.bibliographicCitationDaniel M C, Atzrodt L, Bucher F, Wacker K, B¨ohringer S, Reinhard T and B¨ohringer D 2019 Scientific Reports (1) 4752spa
dcterms.bibliographicCitationWeidi X, Noble J A and Zisserman A 2015 Microscopy cell counting with fully convolutional regression networks 1st Deep Learning Workshop, Medical Image Computing and Computer-Assisted Intervention (MICCAI) (Munich: The Medical Image Computing and Computer Assisted Intervention Society)spa
dcterms.bibliographicCitationLempitsky V and Zisserman A 2010 Learning to count objects in images Advances in Neural Information Processing Systems 23th International Conference on Neural Information Processing Systems (NIPS) (Canada: Neural Information Processing Systems Foundation Inc.) pp 1324–1332spa
dcterms.bibliographicCitationKang D, Ma Z and Chan A B 2018 IEEE Transactions on Circuits and Systems for Video Technology 29(5) 1408spa
dcterms.bibliographicCitationChollet F et al. 2015 Keras: Machine Learning in Python (San Francisco: GitHub Inc.)spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://iopscience.iop.org/article/10.1088/1742-6596/1547/1/012019/meta
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1088/1742-6596/1547/1/012019
dc.subject.keywordsMicroscopios especularesspa
dc.subject.keywordsCélulas en córneasspa
dc.subject.keywordsDensidad celular automatizadaspa
dc.subject.keywordsSoftwarespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución-NoComercial 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spaOtrospa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.