Mostrar el registro sencillo del ítem

dc.contributor.authorArroyo-Pérez, D E
dc.contributor.authorÁlvarez-Canchila, O I
dc.contributor.authorPatiño-Saucedo, A
dc.contributor.authorRostro González, H
dc.contributor.authorPatiño Vanegas, Alberto
dc.coverage.spatialColombia
dc.date.accessioned2020-09-10T21:24:09Z
dc.date.available2020-09-10T21:24:09Z
dc.date.issued2020
dc.date.submitted2020-09-09
dc.identifier.citationArroyo-Pérez, D. E., Alvarez-Canchila, O. I., Patĩo-Saucedo, A., Rostro González, H., & Patĩo-Vanegas, A. (2020). Automatic recognition of colombian car license plates using convolutional neural networks and Chars74k database. Paper presented at the Journal of Physics: Conference Series, , 1547(1) doi:10.1088/1742-6596/1547/1/012024spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9384
dc.description.abstractA methodology for the automatic recognition of Colombian car license plates using convolutional neural networks is proposed. One of the biggest challenges when using onvolutional neural network is the demand for large amounts of samples for training. In this work, we show that if we do not have enough images of vehicle license plates to carry out the training, we can complement it with databases of letters and numbers that are not extracted from cars. The network was trained with the Chars74k database and images of characters extracted from plates of Colombian automobiles. The Chars74k contains approximately 74000 images of all the letters of the Spanish alphabet and all digits from 0 to 9. From chars74k database we have chosen 33849, because the Colombian plates have only uppercase letters and digits. Only 3549 (about 10% of the total) images of characters extracted manually from plates of Colombian automobiles were added. At the input of the convolutional neural network, 70% of the images were used for training, 20% for validation and 10% for testing and the resulting validation accuracy was above 99%. By making a preliminary test on Colombian plates never before used in training, a percentage of correctly recognized plates above 98% was achieved.spa
dc.format.extent8 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceJournal of Physics: Conference Series 1547 (2020) 012024spa
dc.titleAutomatic recognition of Colombian car license plates using convolutional neural networks and Chars74k databasespa
dcterms.bibliographicCitationShivakumara P, Tang D, Asadzadehkaljahi M, Lu T, Pal U and Hossein Anisi M 2018 CAAI Transactions on Intelligence Technology 3(3) 169spa
dcterms.bibliographicCitationHalim S, Zulkifli M and Zulkipli M 2019 Journal of Physics: Conference Series 1358(012084) 1spa
dcterms.bibliographicCitationAstawa I, Bawa I, Asri S and Kariati N 2019 International Journal of Scientific and Technology Research 8(11) 481spa
dcterms.bibliographicCitationDu S, Ibrahim M, Shehata M and Badawy W 2013 IEEE Transactions on Circuits and Systems for Video Technology 23(2) 311spa
dcterms.bibliographicCitationLecun Y, Bengio Y and Hinton G 2015 Nature 521(7553) 436spa
dcterms.bibliographicCitationCalderon J, Vargas J and Perez-Ruiz A 2017 License plate recognition for colombian private vehicles based on an embedded system using the zedboard IEEE Colombian Conference on Robotics and Automation (CCRA) (Bogotá: IEEE)spa
dcterms.bibliographicCitationDe Campos T E, Babu B R, Varma M et al. 2009 Character recognition in natural images Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP) vol 2 (Lisbon: INSTICC Press)spa
dcterms.bibliographicCitationMallat S 2016 Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374(2065) 1spa
dcterms.bibliographicCitationSchmidhuber J 2015 Neural Networks 61 85spa
dcterms.bibliographicCitationRumelhart D E, Durbin R, Golden R and Chauvin Y 1995 Backpropagation: The basic theory Developments in Connectionist Theory. Backpropagation: Theory, Architectures, and Applications (New Jersey: Lawrence Erlbaum Associates Inc.) pp 1–34spa
dcterms.bibliographicCitationGonzalez R C and Woods R E 2017 Digital Image Processing (New York: Pearson)spa
dcterms.bibliographicCitationPatino-Saucedo A, Rostro-Gonzalez H and Conradt J 2018 Tropical fruits classification using an alexnet-type convolutional neural network and image augmentation International Conference on Neural Information Processing (Cambodia: Springer) pp 371–379spa
dcterms.bibliographicCitationBisong E 2019 Google colaboratory Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners (Berkeley: Apress) pp 59–64spa
dcterms.bibliographicCitationWu S, Zhai W and Cao Y 2019 IET Image Processing 13(14) 2744spa
dcterms.bibliographicCitationKessentini Y, Besbes M, Ammar S and Chabbouh A 2019 Expert Systems with Applications 136 159spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1088/1742-6596/1547/1/012024
dc.subject.keywordsCharacter Recognitionspa
dc.subject.keywordsTesseractspa
dc.subject.keywordsTemplate Matchingspa
dc.subject.keywordsConvolutionspa
dc.subject.keywordsDatabase systemsspa
dc.subject.keywordsImage processingspa
dc.subject.keywordsLicense plates (automobile)spa
dc.subject.keywordsColombiansspa
dc.subject.keywordsLarge amountsspa
dc.subject.keywordsVehicle license platesspa
dc.subject.keywordsConvolutional neural networksspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución-NoComercial 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spaOtrospa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.