Mostrar el registro sencillo del ítem
Automatic recognition of Colombian car license plates using convolutional neural networks and Chars74k database
dc.contributor.author | Arroyo-Pérez, D E | |
dc.contributor.author | Álvarez-Canchila, O I | |
dc.contributor.author | Patiño-Saucedo, A | |
dc.contributor.author | Rostro González, H | |
dc.contributor.author | Patiño Vanegas, Alberto | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2020-09-10T21:24:09Z | |
dc.date.available | 2020-09-10T21:24:09Z | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-09-09 | |
dc.identifier.citation | Arroyo-Pérez, D. E., Alvarez-Canchila, O. I., Patĩo-Saucedo, A., Rostro González, H., & Patĩo-Vanegas, A. (2020). Automatic recognition of colombian car license plates using convolutional neural networks and Chars74k database. Paper presented at the Journal of Physics: Conference Series, , 1547(1) doi:10.1088/1742-6596/1547/1/012024 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/9384 | |
dc.description.abstract | A methodology for the automatic recognition of Colombian car license plates using convolutional neural networks is proposed. One of the biggest challenges when using onvolutional neural network is the demand for large amounts of samples for training. In this work, we show that if we do not have enough images of vehicle license plates to carry out the training, we can complement it with databases of letters and numbers that are not extracted from cars. The network was trained with the Chars74k database and images of characters extracted from plates of Colombian automobiles. The Chars74k contains approximately 74000 images of all the letters of the Spanish alphabet and all digits from 0 to 9. From chars74k database we have chosen 33849, because the Colombian plates have only uppercase letters and digits. Only 3549 (about 10% of the total) images of characters extracted manually from plates of Colombian automobiles were added. At the input of the convolutional neural network, 70% of the images were used for training, 20% for validation and 10% for testing and the resulting validation accuracy was above 99%. By making a preliminary test on Colombian plates never before used in training, a percentage of correctly recognized plates above 98% was achieved. | spa |
dc.format.extent | 8 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Journal of Physics: Conference Series 1547 (2020) 012024 | spa |
dc.title | Automatic recognition of Colombian car license plates using convolutional neural networks and Chars74k database | spa |
dcterms.bibliographicCitation | Shivakumara P, Tang D, Asadzadehkaljahi M, Lu T, Pal U and Hossein Anisi M 2018 CAAI Transactions on Intelligence Technology 3(3) 169 | spa |
dcterms.bibliographicCitation | Halim S, Zulkifli M and Zulkipli M 2019 Journal of Physics: Conference Series 1358(012084) 1 | spa |
dcterms.bibliographicCitation | Astawa I, Bawa I, Asri S and Kariati N 2019 International Journal of Scientific and Technology Research 8(11) 481 | spa |
dcterms.bibliographicCitation | Du S, Ibrahim M, Shehata M and Badawy W 2013 IEEE Transactions on Circuits and Systems for Video Technology 23(2) 311 | spa |
dcterms.bibliographicCitation | Lecun Y, Bengio Y and Hinton G 2015 Nature 521(7553) 436 | spa |
dcterms.bibliographicCitation | Calderon J, Vargas J and Perez-Ruiz A 2017 License plate recognition for colombian private vehicles based on an embedded system using the zedboard IEEE Colombian Conference on Robotics and Automation (CCRA) (Bogotá: IEEE) | spa |
dcterms.bibliographicCitation | De Campos T E, Babu B R, Varma M et al. 2009 Character recognition in natural images Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP) vol 2 (Lisbon: INSTICC Press) | spa |
dcterms.bibliographicCitation | Mallat S 2016 Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374(2065) 1 | spa |
dcterms.bibliographicCitation | Schmidhuber J 2015 Neural Networks 61 85 | spa |
dcterms.bibliographicCitation | Rumelhart D E, Durbin R, Golden R and Chauvin Y 1995 Backpropagation: The basic theory Developments in Connectionist Theory. Backpropagation: Theory, Architectures, and Applications (New Jersey: Lawrence Erlbaum Associates Inc.) pp 1–34 | spa |
dcterms.bibliographicCitation | Gonzalez R C and Woods R E 2017 Digital Image Processing (New York: Pearson) | spa |
dcterms.bibliographicCitation | Patino-Saucedo A, Rostro-Gonzalez H and Conradt J 2018 Tropical fruits classification using an alexnet-type convolutional neural network and image augmentation International Conference on Neural Information Processing (Cambodia: Springer) pp 371–379 | spa |
dcterms.bibliographicCitation | Bisong E 2019 Google colaboratory Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners (Berkeley: Apress) pp 59–64 | spa |
dcterms.bibliographicCitation | Wu S, Zhai W and Cao Y 2019 IET Image Processing 13(14) 2744 | spa |
dcterms.bibliographicCitation | Kessentini Y, Besbes M, Ammar S and Chabbouh A 2019 Expert Systems with Applications 136 159 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1088/1742-6596/1547/1/012024 | |
dc.subject.keywords | Character Recognition | spa |
dc.subject.keywords | Tesseract | spa |
dc.subject.keywords | Template Matching | spa |
dc.subject.keywords | Convolution | spa |
dc.subject.keywords | Database systems | spa |
dc.subject.keywords | Image processing | spa |
dc.subject.keywords | License plates (automobile) | spa |
dc.subject.keywords | Colombians | spa |
dc.subject.keywords | Large amounts | spa |
dc.subject.keywords | Vehicle license plates | spa |
dc.subject.keywords | Convolutional neural networks | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | Otro | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.