Mostrar el registro sencillo del ítem

dc.contributor.authorArrieta Rodríguez, Eugenia
dc.contributor.authorLópez-Martínez, Fernando
dc.contributor.authorMartínez Santos, Juan Carlos
dc.coverage.spatialCartagena de Indias
dc.date.accessioned2020-09-10T21:23:04Z
dc.date.available2020-09-10T21:23:04Z
dc.date.issued2020-05-22
dc.date.submitted2020-09-07
dc.identifier.citationArrieta Rodríguez E., López-Martínez F., Martínez Santos J.C. (2020) A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia. In: Saeed K., Dvorský J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science, vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_18spa
dc.identifier.isbn978-3-030-47679-3
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9379
dc.description.abstractThere is a huge problem in public health around the world called severe maternal morbidity (SMM). It occurs during pregnancy, delivery, or puerperium. This condition establishes risk for babies and women lives since it’s earlier detection isn’t easy [8]. In order to respond to such a situation, the current study suggests the use of logistic regression, and supports vector machine to construct a predicting model of risk level of maternal morbidity during pregnancy. Patients for the current study was the pregnant women who received prenatal care at Rafael Calvo Clinic in Cartagena, Colombia and final attention in the same clinic. This study presents the results of two machine learning algorithms, logistic regression and support vector machine. We validated the datasets from the first, second and third quarter of pregnancy with both techniques. The study shows that logistic regression achieves the best results with the prenatal control dataset from the first and second quarter and the support vector machine algorithm achieves the best prediction results with the data set from the third quarter. We generated two datasets using the information of medical records on pregnancy patients at Maternidad Rafael Calvo Clinic. The first dataset contains the six initial months of pregnancy data and the second dataset contains the last quarter of pregnancy data. We trained the first model with logistic regression and the datasets corresponding to the first semester of pregnancy. We obtained a classification of 97% sensibility, 51.8% positive predictive value and F1 score of 67.7%. The support vector machine model was implemented with the datasets obtained from the third quarter of pregnancy. We obtained a classifier with 100% of sensibility, 27.0% of precision.spa
dc.format.extent11 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceLecture Notes in Computer Science, vol 12133.spa
dc.titleA Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombiaspa
dcterms.bibliographicCitationCaicedo-Torres, W., Paternina, Á., Pinzón, H.: Machine learning models for early dengue severity prediction. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.) IBERAMIA 2016. LNCS (LNAI), vol. 10022, pp. 247–258. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47955-2_21spa
dcterms.bibliographicCitationCalvert, J.S., et al.: A computational approach to early sepsis detection. Comput. Biol. Med. 74, 69–73 (2016)spa
dcterms.bibliographicCitationFarran, B., Channanath, A.M., Behbehani, K., Thanaraj, T.A.: Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from Kuwait—a cohort study. BMJ Open 3(5), e002457 (2013)spa
dcterms.bibliographicCitationFawcett, T.: ROC graphs: notes and practical considerations for researchers. Mach. Learn. 31(1), 1–38 (2004)spa
dcterms.bibliographicCitationFeizi-Derakhshi, M.R., Ghaemi, M.: Classifying different feature selection algorithms based on the search strategies. In: International Conference on Machine Learning, Electrical and Mechanical Engineering (2014)spa
dcterms.bibliographicCitationHaaga, J.G., Wasserheit, J.N., Tsui, A.O., et al.: Reproductive Health in Developing Countries: Expanding Dimensions, Building Solutions. National Academies Press, Washington, D.C. (1997)spa
dcterms.bibliographicCitationHuang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)spa
dcterms.bibliographicCitationJahan, S., Begum, K., Shaheen, N., Khandokar, M.: Near-miss/severe acute maternal morbidity (SAMM): a new concept in maternal care. J. Bangladesh Coll. Phys. Surg. 24(1), 29–33 (2006)spa
dcterms.bibliographicCitationLorduy Gómez, J., Carrillo González, S., Muñoz Baldiris, R.E., Díaz-Pérez, A., Perez, I.: Prognostic factors of early neonatal sepsis in the city of Cartagena Colombia (2018)spa
dcterms.bibliographicCitationMani, S., et al.: Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J. Am. Med. Inform. Assoc. 21(2), 326–336 (2014)spa
dcterms.bibliographicCitationNanda, S., Savvidou, M., Syngelaki, A., Akolekar, R., Nicolaides, K.H.: Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenat. Diagn. 31(2), 135–141 (2011)spa
dcterms.bibliographicCitationNg, A.: Machine learning: Stanford machine learning course materialsspa
dcterms.bibliographicCitationNilashi, M., bin Ibrahim, O., Ahmadi, H., Shahmoradi, L.: An analytical method for diseases prediction using machine learning techniques. Comput. Chem. Eng. 106, 212–223 (2017)spa
dcterms.bibliographicCitationWorld Health Organization, UNICEF: Revised 1990 estimates of maternal mortality: a new approach. World Health Organization (1996)spa
dcterms.bibliographicCitationPark, F.J., Leung, C.H., Poon, L.C., Williams, P.F., Rothwell, S.J., Hyett, J.A.: Clinical evaluation of a first trimester algorithm predicting the risk of hypertensive disease of pregnancy. Aust. N. Z. J. Obstet. Gynaecol. 53(6), 532–539 (2013)spa
dcterms.bibliographicCitationPedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)spa
dcterms.bibliographicCitationPoon, L.C., Kametas, N.A., Maiz, N., Akolekar, R., Nicolaides, K.H.: First-trimester prediction of hypertensive disorders in pregnancy. Hypertension 53(5), 812–818 (2009)spa
dcterms.bibliographicCitationRodríguez, E.A., Estrada, F.E., Torres, W.C., Santos, J.C.M.: Early prediction of severe maternal morbidity using machine learning techniques. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.) IBERAMIA 2016. LNCS (LNAI), vol. 10022, pp. 259–270. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47955-2_22spa
dcterms.bibliographicCitationTsui, A.O., Wasserheit, J.N., Haaga, J.G., et al.: Healthy pregnancy and childbearing (1997)spa
dcterms.bibliographicCitationWitten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)spa
dcterms.bibliographicCitationYang, Z., Zhang, T., Lu, J., Zhang, D., Kalui, D.: Optimizing area under the ROC curve via extreme learning machines. Knowl.-Based Syst. 130, 74–89 (2017)spa
dcterms.bibliographicCitationZheng, Z., Li, Y., Cai, Y.: The logistic regression analysis on risk factors of hypertension among peasants in east china & its results validating. Int. J. Comput. Sci. Issues (IJCSI) 10(2 Part 1), 416 (2013)spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1007/978-3-030-47679-3_18
dc.subject.keywordsSevere maternal morbidityspa
dc.subject.keywordsMachine learningspa
dc.subject.keywordsLogistic regressionspa
dc.subject.keywordsSupport Vector Machinespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución-NoComercial 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spaOtrospa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.