Mostrar el registro sencillo del ítem

dc.contributor.authorCepeda, Cristian
dc.contributor.authorOrozco-Henao, Cesar
dc.contributor.authorPercybrooks, Winston
dc.contributor.authorPulgarín-Rivera, Juan Diego
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.contributor.authorVélez, Juan Carlos
dc.date.accessioned2020-09-10T21:20:58Z
dc.date.available2020-09-10T21:20:58Z
dc.date.issued2020-03-06
dc.date.submitted2020-09-03
dc.identifier.citationCepeda, C .; Orozco-Henao, C .; Percybrooks, W .; Pulgarín-Rivera, JD; Montoya, OD; Gil-González, W .; Vélez, JC Sistema inteligente de detección de fallas para microrredes. Energías 2020 , 13 , 1223.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9371
dc.description.abstractThe dynamic features of microgrid operation, such as on-grid/off-grid operation mode, the intermittency of distributed generators, and its dynamic topology due to its ability to reconfigure itself, cause misfiring of conventional protection schemes. To solve this issue, adaptive protection schemes that use robust communication systems have been proposed for the protection of microgrids. However, the cost of this solution is significantly high. This paper presented an intelligent fault detection (FD) system for microgrids on the basis of local measurements and machine learning (ML) techniques. This proposed FD system provided a smart level to intelligent electronic devices (IED) installed on the microgrid through the integration of ML models. This allowed each IED to autonomously determine if a fault occurred on the microgrid, eliminating the requirement of robust communication infrastructure between IEDs for microgrid protection. Additionally, the proposed system presented a methodology composed of four stages, which allowed its implementation in any microgrid. In addition, each stage provided important recommendations for the proper use of ML techniques on the protection problem. The proposed FD system was validated on the modified IEEE 13-nodes test feeder. This took into consideration typical features of microgrids such as the load imbalance, reconfiguration, and off-grid/on-grid operation modes. The results demonstrated the flexibility and simplicity of the FD system in determining the best accuracy performance among several ML models. The ease of design’s implementation, formulation of parameters, and promising test results indicated the potential for real-life applications.spa
dc.format.extent21 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleIntelligent fault detection system for microgridsspa
dcterms.bibliographicCitationAkorede, M.F.; Hizam, H.; Pouresmaeil, E. Distributed energy resources and benefits to the environment. Renew. Sustain. Energy Rev. 2010, 14, 724–734spa
dcterms.bibliographicCitationChowdhury, S.; Chowdhury, P. Crossley Microgrids and Active Distribution Networks; The Institution of Engineering and Technology: London, UK, 2009; ISBN 9781849190145spa
dcterms.bibliographicCitationDas, R.; Kanabar, M.; Adamiak, M.; Apostolov, A.; Antonova, G.; Brahma, S.; Zadeh, M.D.; Hunt, R.; Jester, J.; Kezunovic, M.; et al. Advancements in Centralized Protection and Control Within a Substation. IEEE Trans. Power Deliv. 2016, 31, 1945–1952spa
dcterms.bibliographicCitationHuang, W.T.; Yao, K.C.; Wu, C.C. Using the direct search method for optimal dispatch of distributed generation in a medium-voltage microgrid. Energies 2014, 7, 8355–8373spa
dcterms.bibliographicCitationAtia, R.; Yamada, N. Distributed renewable generation and storage system sizing based on smart dispatch of microgrids. Energies 2016, 9, 176spa
dcterms.bibliographicCitationHatziargyriou, N. Microgrids: Architectures and Control; John Wiley & Sons: London, UK, 2013; ISBN 9781118720677.spa
dcterms.bibliographicCitationMariam, L.; Basu, M.; Conlon, M.F. Microgrid: Architecture, policy and future trends. Renew. Sustain. Energy Rev. 2016, 64, 477–489.spa
dcterms.bibliographicCitationKuo, M.T.; Lu, S. Der Design and implementation of real-time intelligent control and structure based on multi-agent systems in microgrids. Energies 2013, 6, 6045–6059.spa
dcterms.bibliographicCitationGers, J.M.; Holmes, E.J. Protection of Electricity Distribution Networks; IET: London, UK, 2011; ISBN 9781849192231.spa
dcterms.bibliographicCitationPSrivastava, A.; Parida, S.K. Frequency and Voltage Data Processing Based Feeder Protection in Medium Voltage Microgrid. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019; p. 5.spa
dcterms.bibliographicCitationBansal, Y. Microgrid Fault Detection Methods: Reviews, Issues and Future Trends. In Proceedings of the 2018 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Singapore, 22–25 May 2018; pp. 401–406.spa
dcterms.bibliographicCitationHabib, H.F.; El Hariri, M.; Elsayed, A.; Mohammed, O. Utilization of Supercapacitors in Adaptive Protection Applications for Resiliency against Communication Failures: A Size and Cost Optimization Case Study. In Proceedings of the 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, USA, 1–5 October 2017; pp. 1–8.spa
dcterms.bibliographicCitationTang, W.J.; Yang, H.T. DataMining and neural networks based self-adaptive protection strategies for distribution systems with DGs and FCLs. Energies 2018, 11, 426spa
dcterms.bibliographicCitationGolestan, S.; Savaghebi, M.; Beheshtaein, S.; Guerrero, J.M.; Cuzner, R. A Modified Secondary-Control Based Fault Current Limiter for Four-Wire Three Phase DGs. IEEE Trans. Ind. Electron. 2018, 66, 4798–4804.spa
dcterms.bibliographicCitationMumtaz, F.; Bayram, I.S. Planning, Operation, and Protection of Microgrids: An Overview. Energy Procedia 2017, 107, 94–100.spa
dcterms.bibliographicCitationAmir, S.; Askarian, H.; Hossein, S.; Sadeghi, H.; Razavi, F.; Nasiri, A. An overview of microgrid protection methods and the factors involved. Renew. Sustain. Energy Rev. 2016, 64, 174–186.spa
dcterms.bibliographicCitationChen, Y.-X.; Yin, X.-G.; Zhang, Z.; Chen, D.-S. Analysis of an Adaptive Overcurrent Relay for Transmission and Distribution Lines. In Proceedings of the International Conference on Power Systems Transients–IPST, New Orleans, LA, USA, 28 September–2 October 2003; pp. 1–6.spa
dcterms.bibliographicCitationMahat, P.; Chen, Z.; Bak-jensen, B.; Bak, C.L. A simple adaptive overcurrent protection of distribution systems with distributed generation. EEE Trans. Smart Grid 2011, 2, 428–437.spa
dcterms.bibliographicCitationNúñez-Mata, O.; Palma-Behnke, R.; Valencia, F.; Mendoza-Araya, P.; Jiménez-Estévez, G. Adaptive Protection System for Microgrids Based on a Robust Optimization Strategy. Energies 2018, 11, 308.spa
dcterms.bibliographicCitationPiesciorovsky, E.C.; Schulz, N.N. Fuse relay adaptive overcurrent protection scheme for microgrid with distributed generators. IET Gener. Transm. Distrib. 2016, 11, 540–549.spa
dcterms.bibliographicCitationKar, S. A comprehensive protection scheme for micro-grid using fuzzy rule base approach. Energy Syst. 2017, 8, 449–464.spa
dcterms.bibliographicCitationKar, S.; Samantaray, S.R.; Zadeh, M.D. Data-Mining Model Based Intelligent Differential Microgrid Protection Scheme. IEEE Syst. J. 2017, 11, 1161–1169.spa
dcterms.bibliographicCitationMishra, D.P.; Samantaray, S.R.; Joos, G. A combined wavelet and data-mining based intelligent protection scheme for microgrid. IEEE Trans. Smart Grid 2016, 7, 2295–2304.spa
dcterms.bibliographicCitationHooshyar, A.; Iravani, R. Microgrid Protection. Proc. IEEE 2017, 105, 1332–1353.spa
dcterms.bibliographicCitationKar, S.; Samantaray, S.R. Combined S-transform and data-mining based intelligent micro-grid protection scheme. In Proceedings of the 2014 Students Engineering and Systems, Allahabad, India, 28–30 May 2014; pp. 1–5.spa
dcterms.bibliographicCitationMishra, M.; Rout, P.K. Detection and classification of micro-grid faults based on HHT and machine learning techniques. IET Gener. Transm. Distrib. 2018, 12, 388–397.spa
dcterms.bibliographicCitationHudananta, S.; Haryono, T. Study of overcurrent protection on distribution network with distributed generation: An Indonesian case. In Proceedings of the 2017 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, 7–8 October 2017; pp. 126–131.spa
dcterms.bibliographicCitationAbdulwahid, A.H.; Wang, S. A novel approach for microgrid protection based upon combined ANFIS and Hilbert space-based power setting. Energies 2016, 9, 1042.spa
dcterms.bibliographicCitationYu, J.; Hou, Y.; Lam, A.; Li, V. Intelligent Fault Detection Scheme for Microgrids with Wavelet-Based Deep Neural Networks. IEEE Trans. Smart Grid 2019, 10, 1694–1703.spa
dcterms.bibliographicCitationGashteroodkhani, O.A.; Majidi, M.; Fadali, M.S.; Etezadi-Amoli, M.; Maali-Amiri, E. A protection scheme for microgrids using time-time matrix z-score vector. Int. J. Electr. Power Energy Syst. 2019, 110, 400–410.spa
dcterms.bibliographicCitationKavi, M.; Mishra, Y.; Vilathgamuwa, M. Morphological Fault Detector for Adaptive Overcurrent Protection in Distribution Networks with Increasing Photovoltaic Penetration. IEEE Trans. Sustain. Energy 2018, 9, 1021–1029.spa
dcterms.bibliographicCitationAlexopoulos, T.; Biswal, M.; Brahma, S.M.; Khatib, M. El Detection of fault using local measurements at inverter interfaced distributed energy resources. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017.spa
dcterms.bibliographicCitationSamantaray, S.R. A data-mining model for protection of facts-based transmission line. IEEE Trans. Power Deliv. 2013, 28, 612–618.spa
dcterms.bibliographicCitationKar, S.; Samantaray, S.R. Intelligent anti-islanding protection scheme for distributed generations. In Proceedings of the 2013 Annual IEEE India Conference (INDICON), Mumbai, India, 13–15 December 2013; pp. 1–5.spa
dcterms.bibliographicCitationKar, S.; Samantaray, S.R. Multiple features based anti-islanding protection relay for distributed generations. In Proceedings of the 2014 International Conference on Smart Electric Grid (ISEG), Guntur, India, 19–20 September 2014; pp. 1–6.spa
dcterms.bibliographicCitationKar, S.; Samantaray, S.R. Data-mining based comprehensive primary and backup protection scheme for micro-grid. In Proceedings of the IEEE Power, Communication and Information Technology Conference (PCITC), Bhubaneswar, India, 15–17 October 2015; pp. 505–510.spa
dcterms.bibliographicCitationSushrut, A.S.; Vijay, S.D. System reconfiguration in microgrids. Sustain. Energy Grids Netw. 2019, 17, 100191.spa
dcterms.bibliographicCitationZhao, W.; Bi, X.; Wang, W.; Sun, X. Microgrid Relay Protection Scheme Based on Harmonic Footprint of Short-Circuit Fault. Chin. J. Electr. Eng. 2018, 4, 64–70.spa
dcterms.bibliographicCitationWu, X.; Zhu, X.; Wu, G.-Q.; Ding, W. Data Mining with Big Data. IEEE Trans. Knowl. Data Eng. 2014, 63, 331–333.spa
dcterms.bibliographicCitationBernabeu, E.E.; Thorp, J.S.; Centeno, V. Methodology for a security/dependability adaptive protection scheme based on data mining. IEEE Trans. Power Deliv. 2012, 27, 104–111.spa
dcterms.bibliographicCitationPardeshi, C.P.; Jadhav, G.N. Data-mining-based intelligent anti-islanding protection relay for distributed generations. In Proceedings of the IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017; pp. 2496–2501.spa
dcterms.bibliographicCitationHenao, R.; Hurtado, J.E.; Castellanos, G. Selección de hiperparámetros en máquinas de soporte vectorial utilizando adaptación de matriz de covarianza. Sci. Tech. 2005.spa
dcterms.bibliographicCitationHoneine, P. Online kernel principal component analysis: A reduced-order model. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1814–1826.spa
dcterms.bibliographicCitationLathauwer, L.D.E.; Moor, B.D.E.; Vandewalle, J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 2000, 21, 1253–1278.spa
dcterms.bibliographicCitationSoekarno, I.; Hadihardaja, I.K.; Cahyono, M. A Study of Hold-out and K-Fold Cross Validation for accuracy of Groundwater modeling in Tidal Lowland Reclamation Using Extreme Learning Machine. In Proceedings of the 2014 2nd International Technology, Informatics, Management, Engineering & Environment, Bandung, Indonesia, 19–21 August 2014; pp. 228–233.spa
dcterms.bibliographicCitationCorrea-Tapasco, E.; Mora-Florez, J.; Perez-Londono, S. Hybrid approach for an optimal adjustment of a knowledge-based regression technique for locating faults in power distribution systems. DYNA 2011, 78, 31–41.spa
dcterms.bibliographicCitationPassos, G.C.S.; Barrenechea, M.H. Genetic algorithms applied to an evolutionary model of industrial dynamics. EconomiA 2019, in press.spa
dcterms.bibliographicCitationDemidova, L.A.; Egin, M.M.; Tishkin, R.V. A self-tuning multiobjective genetic algorithm with application in the SVM classification. Procedia Comput. Sci. 2019, 150, 503–510.spa
dcterms.bibliographicCitationKersting, W.H. Radial distribution test feeders. In Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, Columbus, OH, USA, 28 January–1 February 2001; pp. 908–912.spa
dcterms.bibliographicCitationCorrea-Tapasco, E.; Mora-Flórez, J.; Perez-Londoño, S. Performance analysis of a learning structured fault locator for distribution systems in the case of polluted inputs. Electr. Power Syst. Res. 2019, 166, 1–8.spa
dcterms.bibliographicCitationXu, L.; Jiang, C.; Wang, J.; Yuan, J.; Ren, Y. Information security in big data: Privacy and data mining. IEEE Access 2014, 2, 1151–1178.spa
dcterms.bibliographicCitationKarystinos, G.N.; Pados, D.A. On overfitting, generalization, and randomly expanded training sets. IEEE Trans. Neural Netw. 2000, 11, 1050–1057.spa
dcterms.bibliographicCitationMontgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: London, UK, 2012; Volume 2, ISBN 0471316490.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/1996-1073/13/5/1223
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/en13051223
dc.subject.keywordsFault detectorspa
dc.subject.keywordsMicrogridspa
dc.subject.keywordsMachine learning-based techniquesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución-NoComercial 4.0 Internacional*
dc.identifier.eissn1996-1073
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spaArtículospa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Electrónicaspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.